Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808714908> ?p ?o ?g. }
- W2808714908 abstract "ABSTRACT Cytochrome-to-cytochrome electron transfer and electron transfer along conduits of multiple extracellular magnetite grains are often proposed as strategies for direct interspecies electron transfer (DIET) that do not require electrically conductive pili (e-pili). However, physical evidence for these proposed DIET mechanisms has been lacking. To investigate these possibilities further, we constructed Geobacter metallireducens strain Aro-5, in which the wild-type pilin gene was replaced with the aro-5 pilin gene that was previously shown to yield poorly conductive pili in Geobacter sulfurreducens strain Aro-5. G. metallireducens strain Aro-5 did not reduce Fe(III) oxide and produced only low current densities, phenotypes consistent with expression of poorly conductive pili. Like G. sulfurreducens strain Aro-5, G. metallireducens strain Aro-5 displayed abundant outer surface cytochromes. Cocultures initiated with wild-type G. metallireducens as the electron-donating strain and G. sulfurreducens strain Aro-5 as the electron-accepting strain grew via DIET. However, G. metallireducens Aro-5/ G. sulfurreducens wild-type cocultures did not. Cocultures initiated with the Aro-5 strains of both species grew only when amended with granular activated carbon (GAC), a conductive material known to be a conduit for DIET. Magnetite could not substitute for GAC. The inability of the two Aro-5 strains to adapt for DIET in the absence of GAC suggests that there are physical constraints on establishing DIET solely through cytochrome-to-cytochrome electron transfer or along chains of magnetite. The finding that DIET is possible with electron-accepting partners that lack highly conductive pili greatly expands the range of potential electron-accepting partners that might participate in DIET. IMPORTANCE DIET is thought to be an important mechanism for interspecies electron exchange in natural anaerobic soils and sediments in which methane is either produced or consumed, as well as in some photosynthetic mats and anaerobic digesters converting organic wastes to methane. Understanding the potential mechanisms for DIET will not only aid in modeling carbon and electron flow in these geochemically significant environments but will also be helpful for interpreting meta-omic data from as-yet-uncultured microbes in DIET-based communities and for designing strategies to promote DIET in anaerobic digesters. The results demonstrate the need to develop a better understanding of the diversity of types of e-pili in the microbial world to identify potential electron-donating partners for DIET. Novel methods for recovering as-yet-uncultivated microorganisms capable of DIET in culture will be needed to further evaluate whether DIET is possible without e-pili in the absence of conductive materials such as GAC." @default.
- W2808714908 created "2018-06-21" @default.
- W2808714908 creator A5008743757 @default.
- W2808714908 creator A5016276504 @default.
- W2808714908 creator A5021568652 @default.
- W2808714908 creator A5029301695 @default.
- W2808714908 creator A5030193525 @default.
- W2808714908 creator A5050995136 @default.
- W2808714908 creator A5084796477 @default.
- W2808714908 date "2018-09-05" @default.
- W2808714908 modified "2023-10-12" @default.
- W2808714908 title "<i>Geobacter</i> Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms" @default.
- W2808714908 cites W1597109130 @default.
- W2808714908 cites W1740585651 @default.
- W2808714908 cites W1779868786 @default.
- W2808714908 cites W1809341209 @default.
- W2808714908 cites W1832626384 @default.
- W2808714908 cites W189047847 @default.
- W2808714908 cites W1914559929 @default.
- W2808714908 cites W1929539987 @default.
- W2808714908 cites W1967677046 @default.
- W2808714908 cites W1981107286 @default.
- W2808714908 cites W1982170357 @default.
- W2808714908 cites W1988751796 @default.
- W2808714908 cites W2003283415 @default.
- W2808714908 cites W2005885488 @default.
- W2808714908 cites W2033173310 @default.
- W2808714908 cites W2040501885 @default.
- W2808714908 cites W2043970764 @default.
- W2808714908 cites W2053654950 @default.
- W2808714908 cites W2067856736 @default.
- W2808714908 cites W2070982098 @default.
- W2808714908 cites W2084651364 @default.
- W2808714908 cites W2090242510 @default.
- W2808714908 cites W2092206453 @default.
- W2808714908 cites W2094455800 @default.
- W2808714908 cites W2096847512 @default.
- W2808714908 cites W2108916917 @default.
- W2808714908 cites W2109991334 @default.
- W2808714908 cites W2112216401 @default.
- W2808714908 cites W2117676837 @default.
- W2808714908 cites W2118253219 @default.
- W2808714908 cites W2132417094 @default.
- W2808714908 cites W2133535156 @default.
- W2808714908 cites W2134580460 @default.
- W2808714908 cites W2139531417 @default.
- W2808714908 cites W2143043177 @default.
- W2808714908 cites W2148239068 @default.
- W2808714908 cites W2151714294 @default.
- W2808714908 cites W2156366019 @default.
- W2808714908 cites W2161693065 @default.
- W2808714908 cites W2164513556 @default.
- W2808714908 cites W2167853153 @default.
- W2808714908 cites W2168456727 @default.
- W2808714908 cites W2238071216 @default.
- W2808714908 cites W24045404 @default.
- W2808714908 cites W2409071597 @default.
- W2808714908 cites W2411328711 @default.
- W2808714908 cites W2461707247 @default.
- W2808714908 cites W2546994975 @default.
- W2808714908 cites W2569396986 @default.
- W2808714908 cites W2571650024 @default.
- W2808714908 cites W2572285478 @default.
- W2808714908 cites W2594765776 @default.
- W2808714908 cites W2618064434 @default.
- W2808714908 cites W2741580058 @default.
- W2808714908 cites W2752494939 @default.
- W2808714908 cites W2766236056 @default.
- W2808714908 cites W2793160680 @default.
- W2808714908 cites W2793453925 @default.
- W2808714908 cites W2951245862 @default.
- W2808714908 cites W4237213021 @default.
- W2808714908 doi "https://doi.org/10.1128/mbio.01273-18" @default.
- W2808714908 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6050967" @default.
- W2808714908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29991583" @default.
- W2808714908 hasPublicationYear "2018" @default.
- W2808714908 type Work @default.
- W2808714908 sameAs 2808714908 @default.
- W2808714908 citedByCount "70" @default.
- W2808714908 countsByYear W28087149082018 @default.
- W2808714908 countsByYear W28087149082019 @default.
- W2808714908 countsByYear W28087149082020 @default.
- W2808714908 countsByYear W28087149082021 @default.
- W2808714908 countsByYear W28087149082022 @default.
- W2808714908 countsByYear W28087149082023 @default.
- W2808714908 crossrefType "journal-article" @default.
- W2808714908 hasAuthorship W2808714908A5008743757 @default.
- W2808714908 hasAuthorship W2808714908A5016276504 @default.
- W2808714908 hasAuthorship W2808714908A5021568652 @default.
- W2808714908 hasAuthorship W2808714908A5029301695 @default.
- W2808714908 hasAuthorship W2808714908A5030193525 @default.
- W2808714908 hasAuthorship W2808714908A5050995136 @default.
- W2808714908 hasAuthorship W2808714908A5084796477 @default.
- W2808714908 hasBestOaLocation W28087149081 @default.
- W2808714908 hasConcept C104317684 @default.
- W2808714908 hasConcept C105702510 @default.
- W2808714908 hasConcept C123669783 @default.
- W2808714908 hasConcept C12554922 @default.
- W2808714908 hasConcept C174832134 @default.
- W2808714908 hasConcept C181199279 @default.