Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808717950> ?p ?o ?g. }
- W2808717950 endingPage "1538" @default.
- W2808717950 startingPage "1518" @default.
- W2808717950 abstract "Summary The Keshen Reservoir is a naturally fractured, deep, tight sandstone gas reservoir under high tectonic stress. Because the reservoir matrix is very tight, the natural-fracture system is the main pathway for gas production. Meanwhile, stimulation is still required for most production wells to provide production rates that sufficiently compensate for the high cost of drilling and completing wells to access this deep reservoir. Large depletion (and related stress change) was expected during the course of the production of the field. The dynamic response of the reservoir and related risks, such as reduction of fracture conductivity, fault reactivation, and casing failure, would compromise the long-term productivity of the reservoir. To quantify the dynamic response of the reservoir and related risks, a 4D reservoir/geomechanics simulation was conducted for Keshen Reservoir by following an integrated work flow. The work started from systematic laboratory fracture-conductivity tests performed with fractured cores to measure conductivity vs. confining stress for both natural fractures and hydraulic fractures (with proppant placed in the fractures of the core samples). Natural-fracture modeling was conducted to generate a discrete-fracture network (DFN) to delineate spatial distribution of the natural-fracture system. In addition, hydraulic-fracture modeling was conducted to delineate the geometry of the hydraulic-fracture system for the stimulated wells. Then, a 3D geomechanical model was constructed by integrating geological, petrophysical, and geomechanical data, and both the DFN and hydraulic-fracture system were incorporated into the 3D geomechanical model. A 4D reservoir/geomechanics simulation was conducted through coupling with a reservoir simulator to predict variations of stress and strain of rock matrix as well as natural fractures and hydraulic fractures during field production. At each study-well location, a near-wellbore model was extracted from the full-field model, and casing and cement were installed to evaluate well integrity during production. The 4D reservoir/geomechanics simulation revealed that there would be a large reduction of conductivity for both natural fractures and hydraulic fractures, and some fractures with certain dip/dip azimuth will be reactivated during the course of field production. The induced-stress change will also compromise well integrity for those poorly cemented wellbores. The field-development plan must consider all these risks to ensure sustainable long-term production. The paper presents a 4D coupled geomechanics/reservoir-simulation study applied to a high-pressure/high-temperature (HP/HT) naturally fractured reservoir, which has rarely been published previously. The study adapted several new techniques to quantify the mechanical response of both natural fractures and hydraulic fractures, such as using laboratory tests to measure stress sensitivity of natural fractures, integrating DFN and hydraulic-fracture systems into 4D geomechanics simulation, and evaluating well integrity on both the reservoir scale and the near-wellbore scale." @default.
- W2808717950 created "2018-06-29" @default.
- W2808717950 creator A5005141727 @default.
- W2808717950 creator A5005975263 @default.
- W2808717950 creator A5033002272 @default.
- W2808717950 creator A5037488697 @default.
- W2808717950 creator A5039718733 @default.
- W2808717950 creator A5041199459 @default.
- W2808717950 creator A5047714441 @default.
- W2808717950 creator A5057993946 @default.
- W2808717950 creator A5076407502 @default.
- W2808717950 creator A5079719595 @default.
- W2808717950 creator A5091100364 @default.
- W2808717950 date "2018-06-21" @default.
- W2808717950 modified "2023-09-30" @default.
- W2808717950 title "Case Study: 4D Coupled Reservoir/Geomechanics Simulation of a High-Pressure/High-Temperature Naturally Fractured Reservoir" @default.
- W2808717950 cites W1041340204 @default.
- W2808717950 cites W1968254189 @default.
- W2808717950 cites W1968364545 @default.
- W2808717950 cites W1969493438 @default.
- W2808717950 cites W1969740536 @default.
- W2808717950 cites W1979577972 @default.
- W2808717950 cites W1987868088 @default.
- W2808717950 cites W1989079678 @default.
- W2808717950 cites W1989428118 @default.
- W2808717950 cites W1994856879 @default.
- W2808717950 cites W2001745934 @default.
- W2808717950 cites W2012280311 @default.
- W2808717950 cites W2012560485 @default.
- W2808717950 cites W2022832162 @default.
- W2808717950 cites W2031029377 @default.
- W2808717950 cites W2040143860 @default.
- W2808717950 cites W2042133641 @default.
- W2808717950 cites W2054248209 @default.
- W2808717950 cites W2056519164 @default.
- W2808717950 cites W2056728198 @default.
- W2808717950 cites W2057397064 @default.
- W2808717950 cites W2061410397 @default.
- W2808717950 cites W2066053222 @default.
- W2808717950 cites W2066739090 @default.
- W2808717950 cites W2068372401 @default.
- W2808717950 cites W2071095224 @default.
- W2808717950 cites W2084027138 @default.
- W2808717950 cites W2091051693 @default.
- W2808717950 cites W2097951549 @default.
- W2808717950 cites W2173619605 @default.
- W2808717950 cites W2318361274 @default.
- W2808717950 cites W2321689007 @default.
- W2808717950 cites W2485960821 @default.
- W2808717950 cites W2761090796 @default.
- W2808717950 doi "https://doi.org/10.2118/187606-pa" @default.
- W2808717950 hasPublicationYear "2018" @default.
- W2808717950 type Work @default.
- W2808717950 sameAs 2808717950 @default.
- W2808717950 citedByCount "10" @default.
- W2808717950 countsByYear W28087179502019 @default.
- W2808717950 countsByYear W28087179502020 @default.
- W2808717950 countsByYear W28087179502021 @default.
- W2808717950 countsByYear W28087179502022 @default.
- W2808717950 countsByYear W28087179502023 @default.
- W2808717950 crossrefType "journal-article" @default.
- W2808717950 hasAuthorship W2808717950A5005141727 @default.
- W2808717950 hasAuthorship W2808717950A5005975263 @default.
- W2808717950 hasAuthorship W2808717950A5033002272 @default.
- W2808717950 hasAuthorship W2808717950A5037488697 @default.
- W2808717950 hasAuthorship W2808717950A5039718733 @default.
- W2808717950 hasAuthorship W2808717950A5041199459 @default.
- W2808717950 hasAuthorship W2808717950A5047714441 @default.
- W2808717950 hasAuthorship W2808717950A5057993946 @default.
- W2808717950 hasAuthorship W2808717950A5076407502 @default.
- W2808717950 hasAuthorship W2808717950A5079719595 @default.
- W2808717950 hasAuthorship W2808717950A5091100364 @default.
- W2808717950 hasConcept C113215200 @default.
- W2808717950 hasConcept C127313418 @default.
- W2808717950 hasConcept C185715996 @default.
- W2808717950 hasConcept C187320778 @default.
- W2808717950 hasConcept C2778668878 @default.
- W2808717950 hasConcept C2779096232 @default.
- W2808717950 hasConcept C43369102 @default.
- W2808717950 hasConcept C46293882 @default.
- W2808717950 hasConcept C5900021 @default.
- W2808717950 hasConcept C6648577 @default.
- W2808717950 hasConcept C78762247 @default.
- W2808717950 hasConceptScore W2808717950C113215200 @default.
- W2808717950 hasConceptScore W2808717950C127313418 @default.
- W2808717950 hasConceptScore W2808717950C185715996 @default.
- W2808717950 hasConceptScore W2808717950C187320778 @default.
- W2808717950 hasConceptScore W2808717950C2778668878 @default.
- W2808717950 hasConceptScore W2808717950C2779096232 @default.
- W2808717950 hasConceptScore W2808717950C43369102 @default.
- W2808717950 hasConceptScore W2808717950C46293882 @default.
- W2808717950 hasConceptScore W2808717950C5900021 @default.
- W2808717950 hasConceptScore W2808717950C6648577 @default.
- W2808717950 hasConceptScore W2808717950C78762247 @default.
- W2808717950 hasIssue "05" @default.
- W2808717950 hasLocation W28087179501 @default.
- W2808717950 hasOpenAccess W2808717950 @default.
- W2808717950 hasPrimaryLocation W28087179501 @default.