Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808763997> ?p ?o ?g. }
- W2808763997 endingPage "245" @default.
- W2808763997 startingPage "227" @default.
- W2808763997 abstract "Identifying the factors that influence student academic performance is essential to provide timely and effective support interventions. The data collected during enrolment and after commencement into a course provide an important source of information to assist with identifying potential risk indicators associated with poor academic performance and attrition. Both predictive and descriptive data mining techniques have been applied on educational data to discover the significant reasons behind student performance. These techniques have their own advantages and limitations. For example, predictive techniques tend to maximise accuracy for correctly classifying students, while the descriptive techniques simply search for interesting student features without considering their academic outcome. Subgroup discovery is a data mining method which takes the advantages of both predictive and descriptive approaches. This study uses subgroup discovery to extract significant factors of student performance for a certain outcome (Pass or Fail). In this work, we have utilised student demographic and academic data recorded at enrolment, as well as course assessment and participation data retrieved from the institution’s learning management system (Moodle) to detect the factors affecting student performance. The results have demonstrated the effectiveness of the subgroup discovery method in general in identifying the factors, and the pros and cons of some popular subgroup discovery algorithms used in this research. From the experiments, it has been found that students, who have indigent socio-economic background or been admitted based on special entry requirement, are most likely to fail. The experiments on Moodle data have revealed that students having lower level of access to the course resources and forum have higher possibility of being unsuccessful. From the combined data, we have identified some interesting subgroups which are not detected using enrolment or Moodle data separately. It has been found that those students, who study off-campus or part-time and have a low level of contributions to the course learning activities, are more likely to be the low-performing students." @default.
- W2808763997 created "2018-06-29" @default.
- W2808763997 creator A5012177739 @default.
- W2808763997 creator A5025751512 @default.
- W2808763997 creator A5034927525 @default.
- W2808763997 creator A5060701489 @default.
- W2808763997 creator A5066012083 @default.
- W2808763997 creator A5070873335 @default.
- W2808763997 date "2018-06-21" @default.
- W2808763997 modified "2023-10-13" @default.
- W2808763997 title "Identifying key factors of student academic performance by subgroup discovery" @default.
- W2808763997 cites W1484732323 @default.
- W2808763997 cites W1489714560 @default.
- W2808763997 cites W149097362 @default.
- W2808763997 cites W1546338409 @default.
- W2808763997 cites W1589072770 @default.
- W2808763997 cites W1604343573 @default.
- W2808763997 cites W1798570018 @default.
- W2808763997 cites W1966165526 @default.
- W2808763997 cites W1971362221 @default.
- W2808763997 cites W1974017307 @default.
- W2808763997 cites W1980957382 @default.
- W2808763997 cites W1995380464 @default.
- W2808763997 cites W1999103817 @default.
- W2808763997 cites W2003554962 @default.
- W2808763997 cites W2010472418 @default.
- W2808763997 cites W2013142007 @default.
- W2808763997 cites W2013780712 @default.
- W2808763997 cites W2022781850 @default.
- W2808763997 cites W2024233141 @default.
- W2808763997 cites W2028640615 @default.
- W2808763997 cites W2036618718 @default.
- W2808763997 cites W2044109626 @default.
- W2808763997 cites W2048299448 @default.
- W2808763997 cites W2055400097 @default.
- W2808763997 cites W2063679988 @default.
- W2808763997 cites W2064514592 @default.
- W2808763997 cites W2064853889 @default.
- W2808763997 cites W2074650027 @default.
- W2808763997 cites W2082367417 @default.
- W2808763997 cites W2103672843 @default.
- W2808763997 cites W2106571168 @default.
- W2808763997 cites W2107617008 @default.
- W2808763997 cites W2111834232 @default.
- W2808763997 cites W2132452100 @default.
- W2808763997 cites W2133990480 @default.
- W2808763997 cites W2147557780 @default.
- W2808763997 cites W2149289717 @default.
- W2808763997 cites W2149712754 @default.
- W2808763997 cites W2151280208 @default.
- W2808763997 cites W2153378020 @default.
- W2808763997 cites W2166241213 @default.
- W2808763997 cites W2196907121 @default.
- W2808763997 cites W2238902321 @default.
- W2808763997 cites W2385613056 @default.
- W2808763997 cites W2564078846 @default.
- W2808763997 cites W299101407 @default.
- W2808763997 cites W3149271773 @default.
- W2808763997 cites W4236791902 @default.
- W2808763997 cites W4241441096 @default.
- W2808763997 cites W78230123 @default.
- W2808763997 doi "https://doi.org/10.1007/s41060-018-0141-y" @default.
- W2808763997 hasPublicationYear "2018" @default.
- W2808763997 type Work @default.
- W2808763997 sameAs 2808763997 @default.
- W2808763997 citedByCount "26" @default.
- W2808763997 countsByYear W28087639972019 @default.
- W2808763997 countsByYear W28087639972020 @default.
- W2808763997 countsByYear W28087639972021 @default.
- W2808763997 countsByYear W28087639972022 @default.
- W2808763997 countsByYear W28087639972023 @default.
- W2808763997 crossrefType "journal-article" @default.
- W2808763997 hasAuthorship W2808763997A5012177739 @default.
- W2808763997 hasAuthorship W2808763997A5025751512 @default.
- W2808763997 hasAuthorship W2808763997A5034927525 @default.
- W2808763997 hasAuthorship W2808763997A5060701489 @default.
- W2808763997 hasAuthorship W2808763997A5066012083 @default.
- W2808763997 hasAuthorship W2808763997A5070873335 @default.
- W2808763997 hasBestOaLocation W28087639972 @default.
- W2808763997 hasConcept C105795698 @default.
- W2808763997 hasConcept C118552586 @default.
- W2808763997 hasConcept C126322002 @default.
- W2808763997 hasConcept C15744967 @default.
- W2808763997 hasConcept C187960798 @default.
- W2808763997 hasConcept C199343813 @default.
- W2808763997 hasConcept C2522767166 @default.
- W2808763997 hasConcept C27415008 @default.
- W2808763997 hasConcept C2780553607 @default.
- W2808763997 hasConcept C33923547 @default.
- W2808763997 hasConcept C39896193 @default.
- W2808763997 hasConcept C41008148 @default.
- W2808763997 hasConcept C44249647 @default.
- W2808763997 hasConcept C509550671 @default.
- W2808763997 hasConcept C71924100 @default.
- W2808763997 hasConceptScore W2808763997C105795698 @default.
- W2808763997 hasConceptScore W2808763997C118552586 @default.
- W2808763997 hasConceptScore W2808763997C126322002 @default.
- W2808763997 hasConceptScore W2808763997C15744967 @default.