Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808792148> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2808792148 abstract "The problem discussed in this paper stems from a project of cellular network traffic prediction, the primary step of network planning striving to serve the continuously soaring network traffic best with limited resource. The traffic prediction emphasizes two aspects: (1) how to exploit the potential value of physical and electronic properties for tens of thousands of wireless stations, which may partly determine the allocation of traffic load in some intricate way; (2) the lack of sufficient and high-quality historical records, for the appropriate training of long-term predictions, further aggravated by frequent reconfigurations in daily operation. To solve this problem, we define a general framework to accommodate several variants of multi-step forecasting, via decomposing the problem into a series of single-step vector-output regression tasks. They can further be augmented by miscellaneous attributive information, in the form of boosted multiple kernels. Experiments on multiple telecom datasets show that the solution outperforms conventional time series methods on accuracy, especially for long horizons. Those attributes describing the macroscopic factors, such as the network type, topology, locations, are significantly helpful for longer horizons, whereas the immediate values in the near future are mainly determined by their recent records." @default.
- W2808792148 created "2018-06-29" @default.
- W2808792148 creator A5001666028 @default.
- W2808792148 creator A5043302654 @default.
- W2808792148 creator A5056063544 @default.
- W2808792148 creator A5072202821 @default.
- W2808792148 date "2018-01-01" @default.
- W2808792148 modified "2023-09-27" @default.
- W2808792148 title "Rolling Forecasting Forward by Boosting Heterogeneous Kernels" @default.
- W2808792148 cites W2006632570 @default.
- W2808792148 cites W2037963943 @default.
- W2808792148 cites W2144679311 @default.
- W2808792148 cites W2178771485 @default.
- W2808792148 cites W2323435167 @default.
- W2808792148 cites W2579495707 @default.
- W2808792148 cites W2963049813 @default.
- W2808792148 doi "https://doi.org/10.1007/978-3-319-93034-3_20" @default.
- W2808792148 hasPublicationYear "2018" @default.
- W2808792148 type Work @default.
- W2808792148 sameAs 2808792148 @default.
- W2808792148 citedByCount "1" @default.
- W2808792148 countsByYear W28087921482019 @default.
- W2808792148 crossrefType "book-chapter" @default.
- W2808792148 hasAuthorship W2808792148A5001666028 @default.
- W2808792148 hasAuthorship W2808792148A5043302654 @default.
- W2808792148 hasAuthorship W2808792148A5056063544 @default.
- W2808792148 hasAuthorship W2808792148A5072202821 @default.
- W2808792148 hasConcept C119857082 @default.
- W2808792148 hasConcept C124101348 @default.
- W2808792148 hasConcept C154945302 @default.
- W2808792148 hasConcept C165696696 @default.
- W2808792148 hasConcept C199845137 @default.
- W2808792148 hasConcept C31258907 @default.
- W2808792148 hasConcept C38652104 @default.
- W2808792148 hasConcept C41008148 @default.
- W2808792148 hasConcept C46686674 @default.
- W2808792148 hasConceptScore W2808792148C119857082 @default.
- W2808792148 hasConceptScore W2808792148C124101348 @default.
- W2808792148 hasConceptScore W2808792148C154945302 @default.
- W2808792148 hasConceptScore W2808792148C165696696 @default.
- W2808792148 hasConceptScore W2808792148C199845137 @default.
- W2808792148 hasConceptScore W2808792148C31258907 @default.
- W2808792148 hasConceptScore W2808792148C38652104 @default.
- W2808792148 hasConceptScore W2808792148C41008148 @default.
- W2808792148 hasConceptScore W2808792148C46686674 @default.
- W2808792148 hasLocation W28087921481 @default.
- W2808792148 hasOpenAccess W2808792148 @default.
- W2808792148 hasPrimaryLocation W28087921481 @default.
- W2808792148 hasRelatedWork W103114574 @default.
- W2808792148 hasRelatedWork W2036980633 @default.
- W2808792148 hasRelatedWork W2444291283 @default.
- W2808792148 hasRelatedWork W2519532976 @default.
- W2808792148 hasRelatedWork W2795012238 @default.
- W2808792148 hasRelatedWork W2921142444 @default.
- W2808792148 hasRelatedWork W2986370503 @default.
- W2808792148 hasRelatedWork W2990329927 @default.
- W2808792148 hasRelatedWork W2990668842 @default.
- W2808792148 hasRelatedWork W2991364382 @default.
- W2808792148 hasRelatedWork W3009997128 @default.
- W2808792148 hasRelatedWork W3031632615 @default.
- W2808792148 hasRelatedWork W3039728313 @default.
- W2808792148 hasRelatedWork W3100997528 @default.
- W2808792148 hasRelatedWork W3120603342 @default.
- W2808792148 hasRelatedWork W3125437963 @default.
- W2808792148 hasRelatedWork W3131199786 @default.
- W2808792148 hasRelatedWork W3153068647 @default.
- W2808792148 hasRelatedWork W3154701891 @default.
- W2808792148 hasRelatedWork W3170655656 @default.
- W2808792148 isParatext "false" @default.
- W2808792148 isRetracted "false" @default.
- W2808792148 magId "2808792148" @default.
- W2808792148 workType "book-chapter" @default.