Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808826315> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2808826315 endingPage "1763" @default.
- W2808826315 startingPage "1752" @default.
- W2808826315 abstract "Abstract In this work, we describe a new multiframe Super-Resolution (SR) framework based on time-scale adaptive Normalized Convolution (NC), and apply it to astronomical images. The method mainly uses the conceptual basis of NC where each neighborhood of a signal is expressed in terms of the corresponding subspace expanded by the chosen polynomial basis function. Instead of the conventional NC, the introduced spatially adaptive filtering kernel is utilized as the applicability function of shape-adaptive NC, which fits the local image structure information including shape and orientation. This makes it possible to obtain image patches with the same modality, which are collected for polynomial expansion to maximize the signal-to-noise ratio and suppress aliasing artifacts across lines and edges. The robust signal certainty takes the confidence value at each point into account before a local polynomial expansion to minimize the influence of outliers. Finally, the temporal scale applicability is considered to omit accurate motion estimation since it is easy to result in annoying registration errors in real astronomical applications. Excellent SR reconstruction capability of the time-scale adaptive NC is demonstrated through fundamental experiments on both synthetic images and real astronomical images when compared with other SR reconstruction methods." @default.
- W2808826315 created "2018-06-29" @default.
- W2808826315 creator A5003880410 @default.
- W2808826315 creator A5008695541 @default.
- W2808826315 creator A5035761574 @default.
- W2808826315 creator A5089388395 @default.
- W2808826315 date "2018-08-01" @default.
- W2808826315 modified "2023-09-25" @default.
- W2808826315 title "Super-resolution reconstruction of astronomical images using time-scale adaptive normalized convolution" @default.
- W2808826315 cites W1974949120 @default.
- W2808826315 cites W1975874077 @default.
- W2808826315 cites W1992303731 @default.
- W2808826315 cites W1998930608 @default.
- W2808826315 cites W2030480732 @default.
- W2808826315 cites W2031832897 @default.
- W2808826315 cites W2035871342 @default.
- W2808826315 cites W2061617250 @default.
- W2808826315 cites W2081321639 @default.
- W2808826315 cites W2107413975 @default.
- W2808826315 cites W2109586214 @default.
- W2808826315 cites W2120577161 @default.
- W2808826315 cites W2132326029 @default.
- W2808826315 cites W2137290314 @default.
- W2808826315 cites W2146348617 @default.
- W2808826315 cites W2150060382 @default.
- W2808826315 cites W2160967969 @default.
- W2808826315 cites W2165237836 @default.
- W2808826315 cites W2165939075 @default.
- W2808826315 cites W2171574223 @default.
- W2808826315 cites W2558767584 @default.
- W2808826315 cites W2596402752 @default.
- W2808826315 cites W2790653176 @default.
- W2808826315 doi "https://doi.org/10.1016/j.cja.2018.06.002" @default.
- W2808826315 hasPublicationYear "2018" @default.
- W2808826315 type Work @default.
- W2808826315 sameAs 2808826315 @default.
- W2808826315 citedByCount "8" @default.
- W2808826315 countsByYear W28088263152019 @default.
- W2808826315 countsByYear W28088263152020 @default.
- W2808826315 countsByYear W28088263152021 @default.
- W2808826315 countsByYear W28088263152022 @default.
- W2808826315 countsByYear W28088263152023 @default.
- W2808826315 crossrefType "journal-article" @default.
- W2808826315 hasAuthorship W2808826315A5003880410 @default.
- W2808826315 hasAuthorship W2808826315A5008695541 @default.
- W2808826315 hasAuthorship W2808826315A5035761574 @default.
- W2808826315 hasAuthorship W2808826315A5089388395 @default.
- W2808826315 hasBestOaLocation W28088263151 @default.
- W2808826315 hasConcept C11413529 @default.
- W2808826315 hasConcept C127313418 @default.
- W2808826315 hasConcept C138268822 @default.
- W2808826315 hasConcept C154945302 @default.
- W2808826315 hasConcept C205649164 @default.
- W2808826315 hasConcept C2778755073 @default.
- W2808826315 hasConcept C31972630 @default.
- W2808826315 hasConcept C41008148 @default.
- W2808826315 hasConcept C45347329 @default.
- W2808826315 hasConcept C50644808 @default.
- W2808826315 hasConcept C58640448 @default.
- W2808826315 hasConcept C62649853 @default.
- W2808826315 hasConceptScore W2808826315C11413529 @default.
- W2808826315 hasConceptScore W2808826315C127313418 @default.
- W2808826315 hasConceptScore W2808826315C138268822 @default.
- W2808826315 hasConceptScore W2808826315C154945302 @default.
- W2808826315 hasConceptScore W2808826315C205649164 @default.
- W2808826315 hasConceptScore W2808826315C2778755073 @default.
- W2808826315 hasConceptScore W2808826315C31972630 @default.
- W2808826315 hasConceptScore W2808826315C41008148 @default.
- W2808826315 hasConceptScore W2808826315C45347329 @default.
- W2808826315 hasConceptScore W2808826315C50644808 @default.
- W2808826315 hasConceptScore W2808826315C58640448 @default.
- W2808826315 hasConceptScore W2808826315C62649853 @default.
- W2808826315 hasIssue "8" @default.
- W2808826315 hasLocation W28088263151 @default.
- W2808826315 hasOpenAccess W2808826315 @default.
- W2808826315 hasPrimaryLocation W28088263151 @default.
- W2808826315 hasRelatedWork W1736328426 @default.
- W2808826315 hasRelatedWork W1891287906 @default.
- W2808826315 hasRelatedWork W1969923398 @default.
- W2808826315 hasRelatedWork W2036807459 @default.
- W2808826315 hasRelatedWork W2229312674 @default.
- W2808826315 hasRelatedWork W2755342338 @default.
- W2808826315 hasRelatedWork W2772917594 @default.
- W2808826315 hasRelatedWork W2782708705 @default.
- W2808826315 hasRelatedWork W3116076068 @default.
- W2808826315 hasRelatedWork W3207265930 @default.
- W2808826315 hasVolume "31" @default.
- W2808826315 isParatext "false" @default.
- W2808826315 isRetracted "false" @default.
- W2808826315 magId "2808826315" @default.
- W2808826315 workType "article" @default.