Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808863867> ?p ?o ?g. }
- W2808863867 endingPage "263" @default.
- W2808863867 startingPage "254" @default.
- W2808863867 abstract "Abstract The common methods of determining soil carbon (C), nitrogen (N) and their isotopic compositions (δ13C and δ15N) are expensive and time-consuming. Therefore, alternative low-cost and rapid methods are sought to address this issue. This study aimed to investigate the potential of hyperspectral image analysis to predict soil total carbon (TC), total nitrogen (TN), δ13C and δ15N. Hyperspectral images were captured from 96 ground soil samples using a laboratory-based visible to near-infrared (VNIR) hyperspectral camera in the spectral range of 400–1000 nm. Partial least squares regression (PLSR) models were developed to correlate the values of TC, TN, δ13C and δ15N, obtained from isotope ratio mass spectrometry method, with their spectral reflectance. The developed models provided acceptable predictions with high coefficient of determination (R2c) and low root mean square error (RMSEc) of calibration set for TC (R2c = 0.82; RMSEc = 1.08%), TN (R2c = 0.87; RMSEc = 0.02%), δ13C (R2c = 0.82; RMSEc = 0.27‰) and δ15N (R2c = 0.90; RMSEc = 0.29‰). The prediction abilities of the models were then evaluated using the spectra of an external test set (24 samples). The models provided excellent predictions with high R2t and ratio of performance to deviation (RPD) of test set for TC (R2t = 0.76; RPD = 2.02), TN (R2t = 0.86; RPD = 2.08), δ13C (R2t = 0.80; RPD = 2.00) and δ15N (R2t = 0.81; RPD = 1.94). The results indicated that the laboratory-based hyperspectral image analysis has the potential to predict soil TC, TN, δ13C and δ15N." @default.
- W2808863867 created "2018-06-29" @default.
- W2808863867 creator A5002855819 @default.
- W2808863867 creator A5012336981 @default.
- W2808863867 creator A5016781388 @default.
- W2808863867 creator A5039456580 @default.
- W2808863867 creator A5059670163 @default.
- W2808863867 creator A5061310842 @default.
- W2808863867 creator A5089103033 @default.
- W2808863867 date "2018-11-01" @default.
- W2808863867 modified "2023-10-18" @default.
- W2808863867 title "Laboratory-based hyperspectral image analysis for predicting soil carbon, nitrogen and their isotopic compositions" @default.
- W2808863867 cites W1146069309 @default.
- W2808863867 cites W1454172317 @default.
- W2808863867 cites W1535648032 @default.
- W2808863867 cites W1561249009 @default.
- W2808863867 cites W1614726064 @default.
- W2808863867 cites W1656301076 @default.
- W2808863867 cites W1965081519 @default.
- W2808863867 cites W1966089218 @default.
- W2808863867 cites W1967417734 @default.
- W2808863867 cites W1972703100 @default.
- W2808863867 cites W1984780389 @default.
- W2808863867 cites W1985370128 @default.
- W2808863867 cites W1991039337 @default.
- W2808863867 cites W1993414971 @default.
- W2808863867 cites W1995488333 @default.
- W2808863867 cites W2001323604 @default.
- W2808863867 cites W2003561090 @default.
- W2808863867 cites W2003756234 @default.
- W2808863867 cites W2007365900 @default.
- W2808863867 cites W2007475992 @default.
- W2808863867 cites W2012358846 @default.
- W2808863867 cites W2013665199 @default.
- W2808863867 cites W2021337450 @default.
- W2808863867 cites W2031517948 @default.
- W2808863867 cites W2032357894 @default.
- W2808863867 cites W2034083309 @default.
- W2808863867 cites W2038550525 @default.
- W2808863867 cites W2041076509 @default.
- W2808863867 cites W2046404820 @default.
- W2808863867 cites W2047379548 @default.
- W2808863867 cites W2052903566 @default.
- W2808863867 cites W2057743776 @default.
- W2808863867 cites W2060896115 @default.
- W2808863867 cites W2062385034 @default.
- W2808863867 cites W2066834920 @default.
- W2808863867 cites W2067558695 @default.
- W2808863867 cites W2070467687 @default.
- W2808863867 cites W2073503722 @default.
- W2808863867 cites W2073858026 @default.
- W2808863867 cites W2081707742 @default.
- W2808863867 cites W2083183785 @default.
- W2808863867 cites W2084162928 @default.
- W2808863867 cites W2091444647 @default.
- W2808863867 cites W2098722265 @default.
- W2808863867 cites W2104005885 @default.
- W2808863867 cites W2122130178 @default.
- W2808863867 cites W2122461954 @default.
- W2808863867 cites W2123255615 @default.
- W2808863867 cites W2128717878 @default.
- W2808863867 cites W2130496888 @default.
- W2808863867 cites W2138695073 @default.
- W2808863867 cites W214276163 @default.
- W2808863867 cites W2143804637 @default.
- W2808863867 cites W2153238213 @default.
- W2808863867 cites W2165993842 @default.
- W2808863867 cites W2166446427 @default.
- W2808863867 cites W2190247459 @default.
- W2808863867 cites W2225651437 @default.
- W2808863867 cites W2226139254 @default.
- W2808863867 cites W2230388539 @default.
- W2808863867 cites W2258273070 @default.
- W2808863867 cites W2288065762 @default.
- W2808863867 cites W2292929993 @default.
- W2808863867 cites W2325039341 @default.
- W2808863867 cites W2327056505 @default.
- W2808863867 cites W2338691990 @default.
- W2808863867 cites W2399675776 @default.
- W2808863867 cites W2498013452 @default.
- W2808863867 cites W2501273918 @default.
- W2808863867 cites W2519151797 @default.
- W2808863867 cites W2556602559 @default.
- W2808863867 cites W2585526566 @default.
- W2808863867 cites W2599372359 @default.
- W2808863867 cites W2622453992 @default.
- W2808863867 cites W2625979434 @default.
- W2808863867 cites W2768999818 @default.
- W2808863867 cites W2792416313 @default.
- W2808863867 cites W2802256862 @default.
- W2808863867 cites W2809984946 @default.
- W2808863867 cites W2901026972 @default.
- W2808863867 cites W4254926607 @default.
- W2808863867 cites W4889680 @default.
- W2808863867 doi "https://doi.org/10.1016/j.geoderma.2018.06.008" @default.
- W2808863867 hasPublicationYear "2018" @default.
- W2808863867 type Work @default.
- W2808863867 sameAs 2808863867 @default.