Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808893740> ?p ?o ?g. }
- W2808893740 endingPage "53" @default.
- W2808893740 startingPage "44" @default.
- W2808893740 abstract "Abstract Foodborne illness outbreaks have been increasingly linked to the consumption of fresh and frozen berries that were contaminated with pathogenic viruses, such as human norovirus (NoV). Contamination of berries is assumed to take place at harvest by the use of contaminated water for pesticide dilution, irrigation water source or by shedding berry pickers in the field. A quantitative microbial risk assessment simulation model was built to replicate the largest known NoV outbreak which sickened about 11,000 people over a 3-week period. The outbreak occurred in Germany in 2012 when contaminated frozen strawberries were served at nearly 400 schools and daycare centers. The risk model explicitly assumed that all contamination would arise from NoV contamination of surface water used for pesticide dilution. Input data was collected from the published literature, observational studies and assumptions. The model starts with contamination of the berries in the field, and proceeds through transportation to processing facility, washing, sanitizing, freezing, frozen transport to cargo ship, transport view of cargo ship, transport to distribution center, frozen storage at the distribution center, transport to the catering facility, food service preparation and consumption, dose response, and predicted illnesses. A total of 21 scenarios were chosen to evaluate the impact of model parameters on the number of illness associated with NoV contamination of berries. Scenarios evaluated include the initial level of NoV in surface water, the effect of seasonality on the prevalence of NoV in surface water, the strength of the pesticide used, the volume of water used to dilute the pesticide, temperature during transportation to processing facility, washing and sanitizing conditions at processing facility and preparation (heat-treatment) of berries prior to consumption. Scenarios were compared via the Factor Sensitivity technique where the logarithm of the ratio of mean illnesses was used to compare different assumptions. The input that had the greatest effect on increasing in the number of illnesses was a high NoV concentration in the water (8 log Genome Copies/L) when compared to the baseline scenario with resulting mean illnesses of 7964 illnesses and ∼2 illnesses, respectively. This assumption about the concentration of virus in the pesticide makeup water was the only variable capable of producing an outbreak similar to that observed in Germany in 2012. Heat-treatment of the berries, use of a pesticide with strong antiviral effect, and assumption about the virus concentration in the pesticide make-up water had the largest impact on decreasing illnesses." @default.
- W2808893740 created "2018-06-29" @default.
- W2808893740 creator A5035203770 @default.
- W2808893740 creator A5040369880 @default.
- W2808893740 date "2018-12-01" @default.
- W2808893740 modified "2023-10-09" @default.
- W2808893740 title "Farm to fork quantitative microbial risk assessment for norovirus on frozen strawberries" @default.
- W2808893740 cites W109438320 @default.
- W2808893740 cites W1558721156 @default.
- W2808893740 cites W1918368422 @default.
- W2808893740 cites W1936963487 @default.
- W2808893740 cites W1974936450 @default.
- W2808893740 cites W1975649611 @default.
- W2808893740 cites W1979711536 @default.
- W2808893740 cites W1979735896 @default.
- W2808893740 cites W1982323433 @default.
- W2808893740 cites W1983749954 @default.
- W2808893740 cites W1987393080 @default.
- W2808893740 cites W1992757404 @default.
- W2808893740 cites W1993726271 @default.
- W2808893740 cites W2000243942 @default.
- W2808893740 cites W2002273773 @default.
- W2808893740 cites W2004674870 @default.
- W2808893740 cites W2011245902 @default.
- W2808893740 cites W2013447631 @default.
- W2808893740 cites W2018332571 @default.
- W2808893740 cites W2020088405 @default.
- W2808893740 cites W2022163394 @default.
- W2808893740 cites W2024481520 @default.
- W2808893740 cites W2035016154 @default.
- W2808893740 cites W2035031121 @default.
- W2808893740 cites W2044629691 @default.
- W2808893740 cites W2044841798 @default.
- W2808893740 cites W2050896910 @default.
- W2808893740 cites W2052994688 @default.
- W2808893740 cites W2057586804 @default.
- W2808893740 cites W2064482808 @default.
- W2808893740 cites W2073434299 @default.
- W2808893740 cites W2077075878 @default.
- W2808893740 cites W2079699930 @default.
- W2808893740 cites W2083706633 @default.
- W2808893740 cites W2086648209 @default.
- W2808893740 cites W2088565869 @default.
- W2808893740 cites W2090812084 @default.
- W2808893740 cites W2093776089 @default.
- W2808893740 cites W2098631054 @default.
- W2808893740 cites W2100858156 @default.
- W2808893740 cites W2101423654 @default.
- W2808893740 cites W2101559941 @default.
- W2808893740 cites W2108316195 @default.
- W2808893740 cites W2110263409 @default.
- W2808893740 cites W2121174234 @default.
- W2808893740 cites W2122504570 @default.
- W2808893740 cites W2123802616 @default.
- W2808893740 cites W2124750213 @default.
- W2808893740 cites W2125124823 @default.
- W2808893740 cites W2125283487 @default.
- W2808893740 cites W2145312894 @default.
- W2808893740 cites W2145690925 @default.
- W2808893740 cites W2157694673 @default.
- W2808893740 cites W2160463527 @default.
- W2808893740 cites W2170342435 @default.
- W2808893740 cites W2191139669 @default.
- W2808893740 cites W2245115129 @default.
- W2808893740 cites W2343412274 @default.
- W2808893740 cites W2345269671 @default.
- W2808893740 cites W2400156234 @default.
- W2808893740 cites W2411714515 @default.
- W2808893740 cites W2549879500 @default.
- W2808893740 cites W2592184994 @default.
- W2808893740 cites W4254710675 @default.
- W2808893740 doi "https://doi.org/10.1016/j.mran.2018.06.002" @default.
- W2808893740 hasPublicationYear "2018" @default.
- W2808893740 type Work @default.
- W2808893740 sameAs 2808893740 @default.
- W2808893740 citedByCount "14" @default.
- W2808893740 countsByYear W28088937402019 @default.
- W2808893740 countsByYear W28088937402020 @default.
- W2808893740 countsByYear W28088937402021 @default.
- W2808893740 countsByYear W28088937402022 @default.
- W2808893740 countsByYear W28088937402023 @default.
- W2808893740 crossrefType "journal-article" @default.
- W2808893740 hasAuthorship W2808893740A5035203770 @default.
- W2808893740 hasAuthorship W2808893740A5040369880 @default.
- W2808893740 hasConcept C111919701 @default.
- W2808893740 hasConcept C116675565 @default.
- W2808893740 hasConcept C12174686 @default.
- W2808893740 hasConcept C159047783 @default.
- W2808893740 hasConcept C2778602366 @default.
- W2808893740 hasConcept C2778750513 @default.
- W2808893740 hasConcept C31903555 @default.
- W2808893740 hasConcept C38652104 @default.
- W2808893740 hasConcept C39432304 @default.
- W2808893740 hasConcept C40523978 @default.
- W2808893740 hasConcept C41008148 @default.
- W2808893740 hasConcept C86803240 @default.
- W2808893740 hasConceptScore W2808893740C111919701 @default.
- W2808893740 hasConceptScore W2808893740C116675565 @default.