Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808974491> ?p ?o ?g. }
- W2808974491 endingPage "404" @default.
- W2808974491 startingPage "396" @default.
- W2808974491 abstract "Abstract Np(V) behaviour in alkaline, calcite containing systems was studied over a range of neptunium concentrations (1.62 × 10−3 μM–1.62 μM) in two synthetic, high pH, cement leachates under a CO2 controlled atmosphere. The cement leachates were representative of conditions expected in an older (pH 10.5, Ca2+) and younger (pH 13.3, Na+, K+, Ca2+) cementitious geological disposal facility. These systems were studied using a combination of batch sorption and solubility experiments, X-ray absorption spectroscopy, and geochemical modelling to describe Np behaviour. Np(V) solubility in calcite equilibrated old and young cement leachates (OCL and YCL) was 9.7 and 0.084 μM, respectively. In the OCL system, this was consistent with a Np(V)O2OH(am) phase controlling solubility. However, this phase did not explain the very low Np(V) solubility observed in the YCL system. This inconsistency was explored further with a range of pH 13.3 solubility experiments with and variable Ca2+(aq) concentrations. These experiments showed that at pH 13.3, Np(V) solubility decreased with increasing Ca2+ concentration confirming that Ca2+ was a critical control on Np solubility in the YCL systems. X-ray absorption near-edge structure spectroscopy on the precipitate from the 42.2 μM Np(V) experiment confirmed that a Np(V) dioxygenyl species was dominant. This was supported by both geochemical and extended X-ray absorption fine structure data, which suggested a calcium containing Np(V) hydroxide phase was controlling solubility. In YCL systems, sorption of Np(V) to calcite was observed across a range of Np concentrations and solid to solution ratios. A combination of both surface complexation and/or precipitation was likely responsible for the observed Np(V) reaction with calcite in these systems. In the OCL sorption experiments, Np(V) sorption to calcite across a range of Np concentrations was dependent on the solid to solution ratio which is consistent with the formation of a mono-nuclear surface complex. All systems demonstrated slow sorption kinetics, with reaction times of weeks needed to reach apparent equilibrium. This could be explained by slow recrystallisation of the calcite surface and/or the presence of Np(V) colloidal species. Overall, these data provide valuable new insights into Np(V) and actinide(V) behaviour in alkaline conditions of relevance to the disposal of intermediate level radioactive wastes." @default.
- W2808974491 created "2018-06-29" @default.
- W2808974491 creator A5005196910 @default.
- W2808974491 creator A5026090538 @default.
- W2808974491 creator A5030483557 @default.
- W2808974491 creator A5037542140 @default.
- W2808974491 creator A5045002575 @default.
- W2808974491 creator A5051658436 @default.
- W2808974491 creator A5065534061 @default.
- W2808974491 creator A5077235831 @default.
- W2808974491 creator A5086255271 @default.
- W2808974491 date "2018-08-01" @default.
- W2808974491 modified "2023-10-15" @default.
- W2808974491 title "Np(V) sorption and solubility in high pH calcite systems" @default.
- W2808974491 cites W1967175445 @default.
- W2808974491 cites W1974404118 @default.
- W2808974491 cites W1976579496 @default.
- W2808974491 cites W1978201064 @default.
- W2808974491 cites W1979907509 @default.
- W2808974491 cites W1980850522 @default.
- W2808974491 cites W1985893512 @default.
- W2808974491 cites W1987414876 @default.
- W2808974491 cites W1994160814 @default.
- W2808974491 cites W1995027061 @default.
- W2808974491 cites W2003253651 @default.
- W2808974491 cites W2003642238 @default.
- W2808974491 cites W2004764253 @default.
- W2808974491 cites W2005646664 @default.
- W2808974491 cites W2009392238 @default.
- W2808974491 cites W2010541082 @default.
- W2808974491 cites W2021718273 @default.
- W2808974491 cites W2024612899 @default.
- W2808974491 cites W2024832963 @default.
- W2808974491 cites W2029066060 @default.
- W2808974491 cites W2030141281 @default.
- W2808974491 cites W2043073365 @default.
- W2808974491 cites W2047707880 @default.
- W2808974491 cites W2049121830 @default.
- W2808974491 cites W2049829812 @default.
- W2808974491 cites W2061902322 @default.
- W2808974491 cites W2068640334 @default.
- W2808974491 cites W2070227796 @default.
- W2808974491 cites W2074457079 @default.
- W2808974491 cites W2074681376 @default.
- W2808974491 cites W2074897024 @default.
- W2808974491 cites W2075295962 @default.
- W2808974491 cites W2078795808 @default.
- W2808974491 cites W2079991790 @default.
- W2808974491 cites W2084771149 @default.
- W2808974491 cites W2098691329 @default.
- W2808974491 cites W2101885916 @default.
- W2808974491 cites W2112854864 @default.
- W2808974491 cites W2113750501 @default.
- W2808974491 cites W2143561996 @default.
- W2808974491 cites W2273154458 @default.
- W2808974491 cites W2277625060 @default.
- W2808974491 cites W2322603154 @default.
- W2808974491 cites W2324245921 @default.
- W2808974491 cites W2405771596 @default.
- W2808974491 cites W2563313066 @default.
- W2808974491 cites W2565233526 @default.
- W2808974491 cites W2949221068 @default.
- W2808974491 cites W3144825699 @default.
- W2808974491 doi "https://doi.org/10.1016/j.chemgeo.2018.06.016" @default.
- W2808974491 hasPublicationYear "2018" @default.
- W2808974491 type Work @default.
- W2808974491 sameAs 2808974491 @default.
- W2808974491 citedByCount "4" @default.
- W2808974491 countsByYear W28089744912019 @default.
- W2808974491 countsByYear W28089744912022 @default.
- W2808974491 countsByYear W28089744912023 @default.
- W2808974491 crossrefType "journal-article" @default.
- W2808974491 hasAuthorship W2808974491A5005196910 @default.
- W2808974491 hasAuthorship W2808974491A5026090538 @default.
- W2808974491 hasAuthorship W2808974491A5030483557 @default.
- W2808974491 hasAuthorship W2808974491A5037542140 @default.
- W2808974491 hasAuthorship W2808974491A5045002575 @default.
- W2808974491 hasAuthorship W2808974491A5051658436 @default.
- W2808974491 hasAuthorship W2808974491A5065534061 @default.
- W2808974491 hasAuthorship W2808974491A5077235831 @default.
- W2808974491 hasAuthorship W2808974491A5086255271 @default.
- W2808974491 hasBestOaLocation W28089744911 @default.
- W2808974491 hasConcept C125287762 @default.
- W2808974491 hasConcept C13965031 @default.
- W2808974491 hasConcept C150394285 @default.
- W2808974491 hasConcept C155574463 @default.
- W2808974491 hasConcept C159985019 @default.
- W2808974491 hasConcept C178790620 @default.
- W2808974491 hasConcept C185592680 @default.
- W2808974491 hasConcept C192562407 @default.
- W2808974491 hasConcept C199289684 @default.
- W2808974491 hasConcept C2780191791 @default.
- W2808974491 hasConcept C48663136 @default.
- W2808974491 hasConcept C516372188 @default.
- W2808974491 hasConcept C540271850 @default.
- W2808974491 hasConcept C58445606 @default.
- W2808974491 hasConcept C88380143 @default.
- W2808974491 hasConceptScore W2808974491C125287762 @default.