Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808994524> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2808994524 endingPage "253" @default.
- W2808994524 startingPage "245" @default.
- W2808994524 abstract "Increasing demand for high field magnetic resonance (MR) scanner indicates the need for high-quality MR images for accurate medical diagnosis. However, cost constraints, instead, motivate a need for algorithms to enhance images from low field scanners. We propose an approach to process the given low field (3T) MR image slices to reconstruct the corresponding high field (7T-like) slices. Our framework involves a novel architecture of a merged convolutional autoencoder with a single encoder and multiple decoders. Specifically, we employ three decoders with random initializations, and the proposed training approach involves selection of a particular decoder in each weight-update iteration for back propagation. We demonstrate that the proposed algorithm outperforms some related contemporary methods in terms of performance and reconstruction time." @default.
- W2808994524 created "2018-06-29" @default.
- W2808994524 creator A5018647189 @default.
- W2808994524 creator A5084290551 @default.
- W2808994524 creator A5085641811 @default.
- W2808994524 creator A5090297119 @default.
- W2808994524 date "2018-01-01" @default.
- W2808994524 modified "2023-09-28" @default.
- W2808994524 title "Learning to Decode 7T-Like MR Image Reconstruction from 3T MR Images" @default.
- W2808994524 cites W1901129140 @default.
- W2808994524 cites W1983060851 @default.
- W2808994524 cites W2048330522 @default.
- W2808994524 cites W2092245015 @default.
- W2808994524 cites W2121058967 @default.
- W2808994524 cites W2134584543 @default.
- W2808994524 cites W2331918145 @default.
- W2808994524 cites W2522924304 @default.
- W2808994524 cites W2750807812 @default.
- W2808994524 doi "https://doi.org/10.1007/978-3-030-00889-5_28" @default.
- W2808994524 hasPublicationYear "2018" @default.
- W2808994524 type Work @default.
- W2808994524 sameAs 2808994524 @default.
- W2808994524 citedByCount "3" @default.
- W2808994524 countsByYear W28089945242019 @default.
- W2808994524 countsByYear W28089945242021 @default.
- W2808994524 countsByYear W28089945242023 @default.
- W2808994524 crossrefType "book-chapter" @default.
- W2808994524 hasAuthorship W2808994524A5018647189 @default.
- W2808994524 hasAuthorship W2808994524A5084290551 @default.
- W2808994524 hasAuthorship W2808994524A5085641811 @default.
- W2808994524 hasAuthorship W2808994524A5090297119 @default.
- W2808994524 hasBestOaLocation W28089945242 @default.
- W2808994524 hasConcept C101738243 @default.
- W2808994524 hasConcept C108583219 @default.
- W2808994524 hasConcept C111919701 @default.
- W2808994524 hasConcept C11413529 @default.
- W2808994524 hasConcept C115961682 @default.
- W2808994524 hasConcept C118505674 @default.
- W2808994524 hasConcept C141379421 @default.
- W2808994524 hasConcept C152565575 @default.
- W2808994524 hasConcept C153180895 @default.
- W2808994524 hasConcept C154945302 @default.
- W2808994524 hasConcept C202444582 @default.
- W2808994524 hasConcept C2779751349 @default.
- W2808994524 hasConcept C31972630 @default.
- W2808994524 hasConcept C33923547 @default.
- W2808994524 hasConcept C41008148 @default.
- W2808994524 hasConcept C55020928 @default.
- W2808994524 hasConcept C9652623 @default.
- W2808994524 hasConcept C98045186 @default.
- W2808994524 hasConceptScore W2808994524C101738243 @default.
- W2808994524 hasConceptScore W2808994524C108583219 @default.
- W2808994524 hasConceptScore W2808994524C111919701 @default.
- W2808994524 hasConceptScore W2808994524C11413529 @default.
- W2808994524 hasConceptScore W2808994524C115961682 @default.
- W2808994524 hasConceptScore W2808994524C118505674 @default.
- W2808994524 hasConceptScore W2808994524C141379421 @default.
- W2808994524 hasConceptScore W2808994524C152565575 @default.
- W2808994524 hasConceptScore W2808994524C153180895 @default.
- W2808994524 hasConceptScore W2808994524C154945302 @default.
- W2808994524 hasConceptScore W2808994524C202444582 @default.
- W2808994524 hasConceptScore W2808994524C2779751349 @default.
- W2808994524 hasConceptScore W2808994524C31972630 @default.
- W2808994524 hasConceptScore W2808994524C33923547 @default.
- W2808994524 hasConceptScore W2808994524C41008148 @default.
- W2808994524 hasConceptScore W2808994524C55020928 @default.
- W2808994524 hasConceptScore W2808994524C9652623 @default.
- W2808994524 hasConceptScore W2808994524C98045186 @default.
- W2808994524 hasLocation W28089945241 @default.
- W2808994524 hasLocation W28089945242 @default.
- W2808994524 hasOpenAccess W2808994524 @default.
- W2808994524 hasPrimaryLocation W28089945241 @default.
- W2808994524 hasRelatedWork W2574052219 @default.
- W2808994524 hasRelatedWork W2669956259 @default.
- W2808994524 hasRelatedWork W2776466379 @default.
- W2808994524 hasRelatedWork W2949506716 @default.
- W2808994524 hasRelatedWork W2950300748 @default.
- W2808994524 hasRelatedWork W2998168123 @default.
- W2808994524 hasRelatedWork W4210427169 @default.
- W2808994524 hasRelatedWork W4220775285 @default.
- W2808994524 hasRelatedWork W4287995534 @default.
- W2808994524 hasRelatedWork W4289784633 @default.
- W2808994524 isParatext "false" @default.
- W2808994524 isRetracted "false" @default.
- W2808994524 magId "2808994524" @default.
- W2808994524 workType "book-chapter" @default.