Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809225535> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2809225535 abstract "Author(s): Shirman, Aleksandra | Advisor(s): Abarbanel, Henry D. I. | Abstract: Data Assimilation (DA) is a method through which information is extracted from measured quantities and with the help of a mathematical model is transferred through a probability distribution to unknown or unmeasured states and parameters characterizing the system of study. With an estimate of the model paramters, quantitative predictions may be made and compared to subsequent data. Many recent DA efforts rely on an probability distribution optimization that locates the most probable state and parameter values given a set of data. The procedure developed and demonstrated here extends the optimization by appending a biased random walk around the states and parameters of high probability to generate an estimate of the structure in state space of the probability density function (PDF). The estimate of the structure of the PDF will facilitate more accurate estimates of expectation values of means, standard deviations and higher moments of states and parameters that characterize the behavior of the system of study. The ability to calculate these expectation values will allow for an error bar or tolerance interval to be attached to each estimated state or parameter, in turn giving significance to any results generated. The estimation method’s merits will be demonstrated on a simulated well known chaotic system, the Lorenz 96 system, and on a toy model of a neuron. In both situations the model system provides unique challenges for estimation: In chaotic systems any small error in estimation generates extremely large prediction errors while in neurons only one of the (at minimum) four dynamical variables can be measured leading to a small amount of data with which to work. This thesis will conclude with an exploration of the equivalence of machine learning and the formulation of statistical DA. The application of previous DA methods are demonstrated on the classic machine learning problem: the characterization of handwritten images from the MNIST data set. The results of this work are used to validate common assumptions in machine learning work such as the dependence of the quality of results on the amount of data presented and the size of the network used. Finally DA is proposed as a method through which to discern an `ideal' network size for a set of given data which optimizes predictive capabilities while minimizing computational costs." @default.
- W2809225535 created "2018-06-29" @default.
- W2809225535 creator A5084321151 @default.
- W2809225535 date "2018-01-01" @default.
- W2809225535 modified "2023-09-23" @default.
- W2809225535 title "Strategic Monte Carlo and Variational Methods in Statistical Data Assimilation for Nonlinear Dynamical Systems" @default.
- W2809225535 hasPublicationYear "2018" @default.
- W2809225535 type Work @default.
- W2809225535 sameAs 2809225535 @default.
- W2809225535 citedByCount "3" @default.
- W2809225535 countsByYear W28092255352017 @default.
- W2809225535 countsByYear W28092255352018 @default.
- W2809225535 countsByYear W28092255352019 @default.
- W2809225535 crossrefType "journal-article" @default.
- W2809225535 hasAuthorship W2809225535A5084321151 @default.
- W2809225535 hasConcept C105795698 @default.
- W2809225535 hasConcept C11413529 @default.
- W2809225535 hasConcept C114614502 @default.
- W2809225535 hasConcept C121332964 @default.
- W2809225535 hasConcept C121864883 @default.
- W2809225535 hasConcept C126255220 @default.
- W2809225535 hasConcept C149441793 @default.
- W2809225535 hasConcept C153294291 @default.
- W2809225535 hasConcept C154945302 @default.
- W2809225535 hasConcept C158622935 @default.
- W2809225535 hasConcept C167928553 @default.
- W2809225535 hasConcept C19499675 @default.
- W2809225535 hasConcept C197055811 @default.
- W2809225535 hasConcept C24552861 @default.
- W2809225535 hasConcept C2777052490 @default.
- W2809225535 hasConcept C2778067643 @default.
- W2809225535 hasConcept C28826006 @default.
- W2809225535 hasConcept C33923547 @default.
- W2809225535 hasConcept C41008148 @default.
- W2809225535 hasConcept C62520636 @default.
- W2809225535 hasConcept C72434380 @default.
- W2809225535 hasConceptScore W2809225535C105795698 @default.
- W2809225535 hasConceptScore W2809225535C11413529 @default.
- W2809225535 hasConceptScore W2809225535C114614502 @default.
- W2809225535 hasConceptScore W2809225535C121332964 @default.
- W2809225535 hasConceptScore W2809225535C121864883 @default.
- W2809225535 hasConceptScore W2809225535C126255220 @default.
- W2809225535 hasConceptScore W2809225535C149441793 @default.
- W2809225535 hasConceptScore W2809225535C153294291 @default.
- W2809225535 hasConceptScore W2809225535C154945302 @default.
- W2809225535 hasConceptScore W2809225535C158622935 @default.
- W2809225535 hasConceptScore W2809225535C167928553 @default.
- W2809225535 hasConceptScore W2809225535C19499675 @default.
- W2809225535 hasConceptScore W2809225535C197055811 @default.
- W2809225535 hasConceptScore W2809225535C24552861 @default.
- W2809225535 hasConceptScore W2809225535C2777052490 @default.
- W2809225535 hasConceptScore W2809225535C2778067643 @default.
- W2809225535 hasConceptScore W2809225535C28826006 @default.
- W2809225535 hasConceptScore W2809225535C33923547 @default.
- W2809225535 hasConceptScore W2809225535C41008148 @default.
- W2809225535 hasConceptScore W2809225535C62520636 @default.
- W2809225535 hasConceptScore W2809225535C72434380 @default.
- W2809225535 hasLocation W28092255351 @default.
- W2809225535 hasOpenAccess W2809225535 @default.
- W2809225535 hasPrimaryLocation W28092255351 @default.
- W2809225535 hasRelatedWork W1981220847 @default.
- W2809225535 hasRelatedWork W2053332694 @default.
- W2809225535 hasRelatedWork W2113056710 @default.
- W2809225535 hasRelatedWork W2144227416 @default.
- W2809225535 hasRelatedWork W2224394627 @default.
- W2809225535 hasRelatedWork W2249122536 @default.
- W2809225535 hasRelatedWork W2325716035 @default.
- W2809225535 hasRelatedWork W2520593998 @default.
- W2809225535 hasRelatedWork W2613958754 @default.
- W2809225535 hasRelatedWork W2907320315 @default.
- W2809225535 hasRelatedWork W2913531880 @default.
- W2809225535 hasRelatedWork W2951368259 @default.
- W2809225535 hasRelatedWork W3012416827 @default.
- W2809225535 hasRelatedWork W3022839356 @default.
- W2809225535 hasRelatedWork W3099446425 @default.
- W2809225535 hasRelatedWork W3120319067 @default.
- W2809225535 hasRelatedWork W3124321925 @default.
- W2809225535 hasRelatedWork W3212978412 @default.
- W2809225535 hasRelatedWork W2185621667 @default.
- W2809225535 hasRelatedWork W2373632457 @default.
- W2809225535 isParatext "false" @default.
- W2809225535 isRetracted "false" @default.
- W2809225535 magId "2809225535" @default.
- W2809225535 workType "article" @default.