Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809236331> ?p ?o ?g. }
- W2809236331 endingPage "692" @default.
- W2809236331 startingPage "684" @default.
- W2809236331 abstract "Enhanced oil recovery (EOR) using low salinity water has been proven experimentally and at the field scale. One of the mechanisms behind recovery enhancement due to low salinity water injection has been related to the change of rock surface charge which might lead to wettability alteration. Low salinity water EOR has its own disadvantages such as the high cost due to the need for enormous amounts of fresh water and it may cause scale precipitation and fines migration. Therefore, efficient and alternative low-cost EOR methods are needed. In this work, chelating agent diethylenetriaminepentaacetic acid (DTPA) for EOR application in sandstone rock was investigated. DTPA is an efficient metal ion control agent and can seize certain cations (especially Fe3+) from rock surfaces. DTPA chelating agent is very stable up to 400 °F at high pH values. The effect of DTPA injection on the surface charge of the sandstone rocks was investigated. Zeta potential measurements, ions analysis after interaction with the rock, and coreflooding experiments were performed. Three different types of sandstone rocks were used to investigate the changes in rock surface after conditioning with DTPA. Several scenarios were tested to compare low salinity water, deionized water, and seawater with DTPA chelating agent. The comparison was made by measuring the zeta potential of the rock powder. Coreflooding experiment was conducted along with effluent analysis for SO42−, Ca2+, Mg2+, Fe3+, and Al3+ ions to observe the effect of injecting DTPA with seawater on oil recovery and permeability. The results showed that the addition of DTPA resulted in Fe+3 ions absorption from the rock surface. Absorbing such trivalent cation resulted in a significant change in surface charge. Zeta potential dropped towards a more negative value for all sandstone rocks samples used in this study. Zeta potential results showed that mixing Berea sandstone with 5 wt% of DTPA in seawater led to similar surface charge value as if it was mixed with low salinity water for the same period. This means that DTPA combats the effect of the concentrated salts in seawater. DTPA chelated all multivalent cations in seawater and eliminated their effects on the surface charge. Also, DTPA increased the pH of the seawater from 7 to 11 and this will drag the surface charge to more negative. From coreflooding experiment, we observed that injecting 5 wt% DTPA solution in seawater after seawater injection enhanced the oil recovery from 56% to 75% in Berea sandstone cores at 100 °C. The additional oil recovery can be explained by more negative values of the zeta potential of the rock surface. We expect that chelating agent EOR using DTPA is a viable alternative to low salinity water flooding where huge fresh water is required to dilute the seawater." @default.
- W2809236331 created "2018-06-29" @default.
- W2809236331 creator A5001477860 @default.
- W2809236331 creator A5023804988 @default.
- W2809236331 creator A5060030948 @default.
- W2809236331 date "2018-11-01" @default.
- W2809236331 modified "2023-10-17" @default.
- W2809236331 title "Interactions of DTPA chelating agent with sandstone rocks during EOR: Rock surface charge study" @default.
- W2809236331 cites W2002862765 @default.
- W2809236331 cites W2005323816 @default.
- W2809236331 cites W2031121845 @default.
- W2809236331 cites W2043130642 @default.
- W2809236331 cites W2051528398 @default.
- W2809236331 cites W2084382326 @default.
- W2809236331 cites W2085731681 @default.
- W2809236331 cites W2087961445 @default.
- W2809236331 cites W2142432823 @default.
- W2809236331 cites W2193099517 @default.
- W2809236331 cites W2210762072 @default.
- W2809236331 cites W2500554255 @default.
- W2809236331 cites W2604432829 @default.
- W2809236331 cites W2724872305 @default.
- W2809236331 cites W2792695055 @default.
- W2809236331 cites W2792700708 @default.
- W2809236331 cites W2793772260 @default.
- W2809236331 cites W47946225 @default.
- W2809236331 cites W3022039671 @default.
- W2809236331 doi "https://doi.org/10.1016/j.fuel.2018.06.003" @default.
- W2809236331 hasPublicationYear "2018" @default.
- W2809236331 type Work @default.
- W2809236331 sameAs 2809236331 @default.
- W2809236331 citedByCount "14" @default.
- W2809236331 countsByYear W28092363312019 @default.
- W2809236331 countsByYear W28092363312020 @default.
- W2809236331 countsByYear W28092363312021 @default.
- W2809236331 countsByYear W28092363312022 @default.
- W2809236331 countsByYear W28092363312023 @default.
- W2809236331 crossrefType "journal-article" @default.
- W2809236331 hasAuthorship W2809236331A5001477860 @default.
- W2809236331 hasAuthorship W2809236331A5023804988 @default.
- W2809236331 hasAuthorship W2809236331A5060030948 @default.
- W2809236331 hasConcept C107054158 @default.
- W2809236331 hasConcept C111368507 @default.
- W2809236331 hasConcept C121332964 @default.
- W2809236331 hasConcept C127313418 @default.
- W2809236331 hasConcept C127413603 @default.
- W2809236331 hasConcept C129513315 @default.
- W2809236331 hasConcept C134514944 @default.
- W2809236331 hasConcept C147789679 @default.
- W2809236331 hasConcept C153294291 @default.
- W2809236331 hasConcept C155672457 @default.
- W2809236331 hasConcept C178790620 @default.
- W2809236331 hasConcept C179104552 @default.
- W2809236331 hasConcept C185592680 @default.
- W2809236331 hasConcept C197248824 @default.
- W2809236331 hasConcept C197404232 @default.
- W2809236331 hasConcept C199289684 @default.
- W2809236331 hasConcept C2776957854 @default.
- W2809236331 hasConcept C2779681308 @default.
- W2809236331 hasConcept C2780358262 @default.
- W2809236331 hasConcept C42360764 @default.
- W2809236331 hasConcept C78762247 @default.
- W2809236331 hasConcept C86181022 @default.
- W2809236331 hasConceptScore W2809236331C107054158 @default.
- W2809236331 hasConceptScore W2809236331C111368507 @default.
- W2809236331 hasConceptScore W2809236331C121332964 @default.
- W2809236331 hasConceptScore W2809236331C127313418 @default.
- W2809236331 hasConceptScore W2809236331C127413603 @default.
- W2809236331 hasConceptScore W2809236331C129513315 @default.
- W2809236331 hasConceptScore W2809236331C134514944 @default.
- W2809236331 hasConceptScore W2809236331C147789679 @default.
- W2809236331 hasConceptScore W2809236331C153294291 @default.
- W2809236331 hasConceptScore W2809236331C155672457 @default.
- W2809236331 hasConceptScore W2809236331C178790620 @default.
- W2809236331 hasConceptScore W2809236331C179104552 @default.
- W2809236331 hasConceptScore W2809236331C185592680 @default.
- W2809236331 hasConceptScore W2809236331C197248824 @default.
- W2809236331 hasConceptScore W2809236331C197404232 @default.
- W2809236331 hasConceptScore W2809236331C199289684 @default.
- W2809236331 hasConceptScore W2809236331C2776957854 @default.
- W2809236331 hasConceptScore W2809236331C2779681308 @default.
- W2809236331 hasConceptScore W2809236331C2780358262 @default.
- W2809236331 hasConceptScore W2809236331C42360764 @default.
- W2809236331 hasConceptScore W2809236331C78762247 @default.
- W2809236331 hasConceptScore W2809236331C86181022 @default.
- W2809236331 hasFunder F4320322323 @default.
- W2809236331 hasLocation W28092363311 @default.
- W2809236331 hasOpenAccess W2809236331 @default.
- W2809236331 hasPrimaryLocation W28092363311 @default.
- W2809236331 hasRelatedWork W1605008923 @default.
- W2809236331 hasRelatedWork W1964702091 @default.
- W2809236331 hasRelatedWork W2013127488 @default.
- W2809236331 hasRelatedWork W2158386879 @default.
- W2809236331 hasRelatedWork W2326816130 @default.
- W2809236331 hasRelatedWork W2483994184 @default.
- W2809236331 hasRelatedWork W2624008240 @default.
- W2809236331 hasRelatedWork W3041063688 @default.
- W2809236331 hasRelatedWork W3205846866 @default.