Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809249700> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2809249700 endingPage "5" @default.
- W2809249700 startingPage "1" @default.
- W2809249700 abstract "This paper presents the detail analysis of the radial force and bending moment responsible for vibration in the stator permanent magnet synchronous motors (SPMSM). Firstly, the air gap flux density distribution and radial force density distribution are derived in detail. In addition, the relationships between these two vibrations and pole width, pole number and slot number are analyzed. The multi-probe mode-included test method of vibration acceleration is proposed and the experimental results on a6-pole/36-slot SPMSM match well with the simulation results. 0 Introduction With the advancement of the electrical vehicles such as hybrid-electric and electric vehicles, improving the noise and vibration characteristics of rotating electric machines is becoming important consideration issues for the development of vehicles[1–4]. Electrical vehicles make use of permanent magnet synchronous traction motors for their high torque density and efficiency compared with other types of motors[5–9]. The stator permanent magnet synchronous motors (SPMSM) have good advantages and are widely applied in the industry. Few papers reported to focus on the vibration characteristics of this type of motor[10ߝ12]. So, this paper investigates the vibration mode and frequencies in the stator permanent magnet synchronous motor, which is shown in Fig.1. 1The magnetic field and exciting force 1.1 analysis of Magnetic field When ignoring magnetic saturation, the flux density distribution in the air gap under no load can be expressed as$mathrm{b}(theta, mathrm{t}) = pm ({B_{delta}} {Lambda _{0}}+ sum {B_{delta}} {Lambda _{k}} {mathrm {coskZ}} (theta- {omega _{{mathrm {r}}}}mathrm{t})) theta epsilon left[- alpha pi /(2mathrm{p}) + mathrm{j}2 pi /(2mathrm{p})alpha pi /(2mathrm{p}) + mathrm{j}2 pi /(2mathrm{p}) right]$(1) Where Z is the number of rotor slots, ${Lambda_{0}}$ and ${Lambda_{k}}$ are the amplitude of average and k-th harmonic magnetic permeability. $alpha$ is the pole arc coefficient. When $mathrm{j=2}mathrm{m}$,$mathrm{m=0}$,1,2,3…, the sign in the equation takes a positive value; When $mathrm{j=2} mathrm{m+1}$, the sign is negative. 1.2 Force analysis The force on ferromagnetic substance in the electromagnetic field can be described by Maxwell stress tensor method. Radial force wave generated by magnetic field is${mathrm{p}_{n}}=1 / (2 {mu _{0}}) left{ {(B_{delta}} {Lambda_{0}})^{2}+ sum left[{B_{delta}} {Lambda _{k}} {mathrm {coskZ}} (theta- {omega _{r}}mathrm{t})right] ^{2}+ 2 {B_{delta}} ^{2} {Lambda_{0}}{Lambda _{k}} {mathrm {coskZ}} (theta- {omega _{r}}mathrm{t})right}$(2) The third term indicates radial force which changes with time generated by interaction of the not time-varying magnetic field and the periodic magnetic field, which causes a considerable vibration. The vibration frequencies are the integral multiples of the product of the slot number and the rotation frequency. 2 Two vibration sources In the motor, the radial force ${P_{n}}$ on one pole can be equivalent to one equivalent pulsating force ${P_{np}}$ varied with time on the center line of the pole and equivalent bending moment ${m_{np}}$ varied with time on the pole. The general expression of pulsating force is ${P_{np}}({mathrm{t}}) =2 {mathrm{l}_{p}} {mathrm{RB}_{delta}} ^{2}{Lambda_{0}}{Lambda _{1}} sin ({alpha_{1}}pi /(2mathrm{p}))cos$(jZ $2 pi /(2mathrm{p})- mathrm{Z}{omega _{r}}mathrm{t})/ (mathrm{Z}{mu _{0}})(3)$ Where $R$ is the radius of the inner surface of the pole, ${alpha_{1}}$ is pole arc width expressed by rotor number. Because the uneven distribution of the force density, the corresponding bending moment is ${m_{np}}(mathrm{t}) = {mathrm{l}_{p}} {{mathrm{R}^{2B}}_{delta} ^{2}}{Lambda_{0}}{Lambda_{1}} cos ({alpha_{1}}pi) sin (alpha pi /(2mathrm{p}))sin$(jZ $2 pi /(2mathrm{p})- mathrm{Z}{omega _{r}}mathrm{t})/ (mathrm{Z}{mu _{0}})(4)$ From the equation(3) and (4), we can know that: If $2 pi mathrm{Z} /(2mathrm{p}) =2 mathrm{n}pi$, n is integral, the radial forces and the bending moment on the two adjacent poles are in the same phase. When ${alpha_{1}}$ is $n$, radial force reaches minimum, bending moment reaches maximum, and the mode number equal to the pole number. When ${alpha_{1}}$ is $n+1 /2$, radial force reaches maximum, bending moment reaches minimum, and the vibration mode equal to 0. If $2 pi mathrm{Z} /(2mathrm{p}) =(2 mathrm{n+1}) pi$, the phases of the forces on the two adjacent poles are opposite, and so do the bending moment. When ${alpha_{1}}$ is $n$, radial force reaches minimum, bending moment reaches maximum, and the mode number equal to the pole pairs. When ${alpha_{1}}$ is $n+1 /2$, radial force reaches maximum, bending moment reaches minimum. The vibration mode equal to pole pairs. 3 simulation analysis In the simulation, a harmonic response analysis has been performed by using the mode-superposition method. the motor is constrained by elastic support through the end face. A damping ratios of 4.4% extracted from the modal test is used. The harmonic forces are projected on the structure mesh of the stator in order to calculate the deformation, and the vibration mode. 4 Experiment test In order to verify the validity of analytical model studied in this paper, the Operational Deflection Shapes experiment is performed. The designed motor with 6-pole, 36-slot, ${alpha_{1}} -5$ is hanged on the bracket by elastic rope, and seven accelerometer sensors are evenly attached on the stator in the circumferential direction. The motor run at 1500rpm. Fig.2(a) compares the measured acceleration with those FEM at five frequencies associated with slot frequency. It clearly reveals that the acceleration components at the harmonic frequencies of 36fr, 72fr, 108fr, 144fr, etc.. Vibration shape at slot frequency is measured seen in Fig.2(b). It can be seen clearly that the vibration mode at slot frequency is six order, consistent with the analytical results. 5 Conclusions In this paper, a detailed analysis of vibration in stator permanent magnet synchronous motor (SPMSM) is presented. Some conclusions can be summarized from the paper: The frequencies of the exciting radial force and vibration of the SPMSMs mainly are integral multiples of the product of the slot number and the rotation frequency, which is different from the frequencies related about the pole number in the rotor permanent magnet motors. The vibration mode is decided by the radial force, which causes the pulsating mode, and the bending moment, which causes the bending mode." @default.
- W2809249700 created "2018-06-29" @default.
- W2809249700 creator A5026033469 @default.
- W2809249700 creator A5035292197 @default.
- W2809249700 creator A5035639049 @default.
- W2809249700 creator A5062342541 @default.
- W2809249700 creator A5074346691 @default.
- W2809249700 date "2018-11-01" @default.
- W2809249700 modified "2023-09-24" @default.
- W2809249700 title "Exciting Force and Vibration Analysis of Stator Permanent Magnet Synchronous Motors" @default.
- W2809249700 cites W1996181170 @default.
- W2809249700 cites W1999460718 @default.
- W2809249700 cites W2001907375 @default.
- W2809249700 cites W2029099067 @default.
- W2809249700 cites W2037327980 @default.
- W2809249700 cites W2042611165 @default.
- W2809249700 cites W2048886037 @default.
- W2809249700 cites W2057630662 @default.
- W2809249700 cites W2084624205 @default.
- W2809249700 cites W2108026421 @default.
- W2809249700 cites W2118777471 @default.
- W2809249700 cites W2123552785 @default.
- W2809249700 cites W2126711949 @default.
- W2809249700 doi "https://doi.org/10.1109/tmag.2018.2841419" @default.
- W2809249700 hasPublicationYear "2018" @default.
- W2809249700 type Work @default.
- W2809249700 sameAs 2809249700 @default.
- W2809249700 citedByCount "10" @default.
- W2809249700 countsByYear W28092497002019 @default.
- W2809249700 countsByYear W28092497002020 @default.
- W2809249700 countsByYear W28092497002021 @default.
- W2809249700 countsByYear W28092497002022 @default.
- W2809249700 crossrefType "journal-article" @default.
- W2809249700 hasAuthorship W2809249700A5026033469 @default.
- W2809249700 hasAuthorship W2809249700A5035292197 @default.
- W2809249700 hasAuthorship W2809249700A5035639049 @default.
- W2809249700 hasAuthorship W2809249700A5062342541 @default.
- W2809249700 hasAuthorship W2809249700A5074346691 @default.
- W2809249700 hasConcept C119599485 @default.
- W2809249700 hasConcept C121332964 @default.
- W2809249700 hasConcept C12534926 @default.
- W2809249700 hasConcept C127413603 @default.
- W2809249700 hasConcept C154945302 @default.
- W2809249700 hasConcept C16389437 @default.
- W2809249700 hasConcept C192562407 @default.
- W2809249700 hasConcept C198394728 @default.
- W2809249700 hasConcept C201320609 @default.
- W2809249700 hasConcept C24890656 @default.
- W2809249700 hasConcept C2775924081 @default.
- W2809249700 hasConcept C2776529397 @default.
- W2809249700 hasConcept C2986944758 @default.
- W2809249700 hasConcept C41008148 @default.
- W2809249700 hasConcept C46141821 @default.
- W2809249700 hasConcept C47446073 @default.
- W2809249700 hasConcept C71376005 @default.
- W2809249700 hasConcept C78519656 @default.
- W2809249700 hasConceptScore W2809249700C119599485 @default.
- W2809249700 hasConceptScore W2809249700C121332964 @default.
- W2809249700 hasConceptScore W2809249700C12534926 @default.
- W2809249700 hasConceptScore W2809249700C127413603 @default.
- W2809249700 hasConceptScore W2809249700C154945302 @default.
- W2809249700 hasConceptScore W2809249700C16389437 @default.
- W2809249700 hasConceptScore W2809249700C192562407 @default.
- W2809249700 hasConceptScore W2809249700C198394728 @default.
- W2809249700 hasConceptScore W2809249700C201320609 @default.
- W2809249700 hasConceptScore W2809249700C24890656 @default.
- W2809249700 hasConceptScore W2809249700C2775924081 @default.
- W2809249700 hasConceptScore W2809249700C2776529397 @default.
- W2809249700 hasConceptScore W2809249700C2986944758 @default.
- W2809249700 hasConceptScore W2809249700C41008148 @default.
- W2809249700 hasConceptScore W2809249700C46141821 @default.
- W2809249700 hasConceptScore W2809249700C47446073 @default.
- W2809249700 hasConceptScore W2809249700C71376005 @default.
- W2809249700 hasConceptScore W2809249700C78519656 @default.
- W2809249700 hasIssue "11" @default.
- W2809249700 hasLocation W28092497001 @default.
- W2809249700 hasOpenAccess W2809249700 @default.
- W2809249700 hasPrimaryLocation W28092497001 @default.
- W2809249700 hasRelatedWork W1982205972 @default.
- W2809249700 hasRelatedWork W2034559218 @default.
- W2809249700 hasRelatedWork W2045020999 @default.
- W2809249700 hasRelatedWork W2122939661 @default.
- W2809249700 hasRelatedWork W2163917307 @default.
- W2809249700 hasRelatedWork W2243760973 @default.
- W2809249700 hasRelatedWork W2560766259 @default.
- W2809249700 hasRelatedWork W3006159942 @default.
- W2809249700 hasRelatedWork W3112155943 @default.
- W2809249700 hasRelatedWork W4252042933 @default.
- W2809249700 hasVolume "54" @default.
- W2809249700 isParatext "false" @default.
- W2809249700 isRetracted "false" @default.
- W2809249700 magId "2809249700" @default.
- W2809249700 workType "article" @default.