Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809257002> ?p ?o ?g. }
- W2809257002 endingPage "3949" @default.
- W2809257002 startingPage "3939" @default.
- W2809257002 abstract "Herein, we introduce a methodology for estimating the absorbed dose in organs at risk that is based on specified clinically derived radiopharmaceutical biodistributions and personalized anatomical characteristics.To evaluate the proposed methodology, we used realistic Monte Carlo (MC) simulations and computational pediatric models to calculate a parameter called in this work the specific absorbed dose rate (SADR). The SADR is a unique quantitative metric in that it is specific to a particular organ. It is defined as the absorbed dose rate in an organ when the biodistribution of radioactivity over the whole body is considered. Initially, we applied a validation procedure that calculated specific absorbed fractions (SAFs) from mono-energetic photon sources in the range of 10 keV-2 MeV and compared them with previously published data. We calculated the SADRs for five different radiopharmaceuticals (99m Tc-MDP, 123 I-mIBG, 131 I-MIBG, 131 I-NaI, and 153 Sm-EDTMP) based on their biodistributions at four or five different times; the biodistributions were derived from the clinical scintigraphic data of pediatric patients. We used six models representing male and female patients aged 5, 8, and 14 yr to investigate the absorbed dose variability due to anatomical variations. The GATE Monte Carlo toolkit was used to calculate absorbed doses per organ. Finally, we compared the SADR methodology to that of OLINDA/EXM 1.1 using rescaled masses according to the studied models. Four target organs were considered for calculating the absorbed doses.The ratios of SAFs calculated with GATE simulations to those based on previously published data were between 0.9 and 2.2 when the liver was used as a source organ. Subsequently, we used GATE to calculate a dataset of SADRs for the six pediatric models. The SADRs for pediatric models whose total body weights ranged from 20 to 40 kg varied up to approximately 90%, whereas those for models of similar body masses varied less than 15%. Finally, we found absorbed dose discrepancies of approximately 10-150% between the SADR methodology and OLINDA for two different radiopharmaceuticals. Absorbed doses from SADRs and from individualized S-values in the same pediatric model differed approximately 1-50%.Because pediatric radiopharmaceutical dosimetric estimates demonstrate large variation due to the patient's anatomical characteristics, personalized data should be considered. Using our SADR method in a larger population of phantoms and for a variety of radiopharmaceuticals could enhance the personalization of dosimetry in pediatric nuclear medicine. The proposed methodology provides the advantage of creating time-dependent organ dose rate curves." @default.
- W2809257002 created "2018-06-29" @default.
- W2809257002 creator A5001211384 @default.
- W2809257002 creator A5017431982 @default.
- W2809257002 creator A5018902188 @default.
- W2809257002 creator A5019803931 @default.
- W2809257002 creator A5058667279 @default.
- W2809257002 creator A5066989691 @default.
- W2809257002 date "2018-07-13" @default.
- W2809257002 modified "2023-10-11" @default.
- W2809257002 title "A personalized, Monte Carlo-based method for internal dosimetric evaluation of radiopharmaceuticals in children" @default.
- W2809257002 cites W1964992791 @default.
- W2809257002 cites W1972961864 @default.
- W2809257002 cites W1983397429 @default.
- W2809257002 cites W1997945349 @default.
- W2809257002 cites W1999403749 @default.
- W2809257002 cites W2002847235 @default.
- W2809257002 cites W2002849978 @default.
- W2809257002 cites W2014899814 @default.
- W2809257002 cites W2022936245 @default.
- W2809257002 cites W2027284340 @default.
- W2809257002 cites W2032747682 @default.
- W2809257002 cites W2050377575 @default.
- W2809257002 cites W2071008107 @default.
- W2809257002 cites W2072569801 @default.
- W2809257002 cites W2073286211 @default.
- W2809257002 cites W2095456699 @default.
- W2809257002 cites W2099974131 @default.
- W2809257002 cites W2107919414 @default.
- W2809257002 cites W2114635029 @default.
- W2809257002 cites W2116085429 @default.
- W2809257002 cites W2124089213 @default.
- W2809257002 cites W2127652754 @default.
- W2809257002 cites W2128158076 @default.
- W2809257002 cites W2138563314 @default.
- W2809257002 cites W2138884296 @default.
- W2809257002 cites W2140656556 @default.
- W2809257002 cites W2140796340 @default.
- W2809257002 cites W2144575391 @default.
- W2809257002 cites W2149542978 @default.
- W2809257002 cites W2169496790 @default.
- W2809257002 cites W2230923828 @default.
- W2809257002 cites W2289441479 @default.
- W2809257002 cites W2308750477 @default.
- W2809257002 cites W2318660713 @default.
- W2809257002 cites W2589999485 @default.
- W2809257002 cites W4211093609 @default.
- W2809257002 doi "https://doi.org/10.1002/mp.13055" @default.
- W2809257002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29920693" @default.
- W2809257002 hasPublicationYear "2018" @default.
- W2809257002 type Work @default.
- W2809257002 sameAs 2809257002 @default.
- W2809257002 citedByCount "13" @default.
- W2809257002 countsByYear W28092570022018 @default.
- W2809257002 countsByYear W28092570022019 @default.
- W2809257002 countsByYear W28092570022020 @default.
- W2809257002 countsByYear W28092570022021 @default.
- W2809257002 countsByYear W28092570022022 @default.
- W2809257002 countsByYear W28092570022023 @default.
- W2809257002 crossrefType "journal-article" @default.
- W2809257002 hasAuthorship W2809257002A5001211384 @default.
- W2809257002 hasAuthorship W2809257002A5017431982 @default.
- W2809257002 hasAuthorship W2809257002A5018902188 @default.
- W2809257002 hasAuthorship W2809257002A5019803931 @default.
- W2809257002 hasAuthorship W2809257002A5058667279 @default.
- W2809257002 hasAuthorship W2809257002A5066989691 @default.
- W2809257002 hasBestOaLocation W28092570021 @default.
- W2809257002 hasConcept C105795698 @default.
- W2809257002 hasConcept C121332964 @default.
- W2809257002 hasConcept C151337348 @default.
- W2809257002 hasConcept C185592680 @default.
- W2809257002 hasConcept C19499675 @default.
- W2809257002 hasConcept C19527891 @default.
- W2809257002 hasConcept C202751555 @default.
- W2809257002 hasConcept C2777807558 @default.
- W2809257002 hasConcept C2781184130 @default.
- W2809257002 hasConcept C2989005 @default.
- W2809257002 hasConcept C2991839081 @default.
- W2809257002 hasConcept C33923547 @default.
- W2809257002 hasConcept C55493867 @default.
- W2809257002 hasConcept C71924100 @default.
- W2809257002 hasConcept C75088862 @default.
- W2809257002 hasConceptScore W2809257002C105795698 @default.
- W2809257002 hasConceptScore W2809257002C121332964 @default.
- W2809257002 hasConceptScore W2809257002C151337348 @default.
- W2809257002 hasConceptScore W2809257002C185592680 @default.
- W2809257002 hasConceptScore W2809257002C19499675 @default.
- W2809257002 hasConceptScore W2809257002C19527891 @default.
- W2809257002 hasConceptScore W2809257002C202751555 @default.
- W2809257002 hasConceptScore W2809257002C2777807558 @default.
- W2809257002 hasConceptScore W2809257002C2781184130 @default.
- W2809257002 hasConceptScore W2809257002C2989005 @default.
- W2809257002 hasConceptScore W2809257002C2991839081 @default.
- W2809257002 hasConceptScore W2809257002C33923547 @default.
- W2809257002 hasConceptScore W2809257002C55493867 @default.
- W2809257002 hasConceptScore W2809257002C71924100 @default.
- W2809257002 hasConceptScore W2809257002C75088862 @default.
- W2809257002 hasIssue "8" @default.