Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809401785> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2809401785 abstract "Despite modern-life technological advances and tremendous progress made in surgical techniques including MIS, today's OR is facing many challenges remaining yet to be addressed. The development of CAS systems integrating the SPM methodology was born as a response from the medical community, with the long-term objective to create surgical cockpit systems. Being able to identify surgical tools in use is a key component for systems relying on the SPM methodology. Towards that end, this thesis work has focused on real-time surgical tool detection from microscope 2D images. From the review of the literature, no validation data-sets have been elected as benchmarks by the community. In addition, the neurosurgical context has been addressed only once. As such, the first contribution of this thesis work consisted in the creation of a new surgical tool data-set, made freely available online. Two methods have been proposed to tackle the surgical tool detection challenge. First, the adapted SquaresChnFtrs, evolution of one of the best computer vision state-of-the-art approach for pedestrian detection. Our second contribution, the ShapeDetector, is fully data-driven and performs detection without the use of prior knowledge regarding the number, shape, and position of tools in the image. Compared to previous works, we chose to represent candidate detections with bounding polygons instead of bounding boxes, hence providing more fitting results. For integration into medical systems, we performed different code optimization through CPU and GPU use. Speed gain and accuracy loss from the use of ad-hoc optimization strategies have been thoroughly quantified to find an optimal trade-off between speed and accuracy. Our ShapeDetector is running in-between 5 and 8Hz for 612x480 pixel video sequences.We validated our approaches using a detailed methodology covering the overall tool location, tip position, and orientation. Approaches have been compared and ranked conjointly with a set of competitive baselines. For suction tube detections, we achieved a 15% miss-rate at 0.1 FPPI, compared to a 55% miss-rate for the adapted SquaresChnFtrs. Future works should be directed toward the integration of 3D feature extraction to improve detection performance but also toward the refinement of the semantic labelling step. Coupling the tool detection task to the tool classification in one single framework should be further investigated. Finally, increasing the data-set in diversity, number of tool classes, and detail of annotations is of interest." @default.
- W2809401785 created "2018-06-29" @default.
- W2809401785 creator A5010423987 @default.
- W2809401785 date "2015-05-27" @default.
- W2809401785 modified "2023-09-23" @default.
- W2809401785 title "Real-time detection of surgical tools in 2D neurosurgical videos by modelling global shape and local appearance" @default.
- W2809401785 hasPublicationYear "2015" @default.
- W2809401785 type Work @default.
- W2809401785 sameAs 2809401785 @default.
- W2809401785 citedByCount "0" @default.
- W2809401785 crossrefType "dissertation" @default.
- W2809401785 hasAuthorship W2809401785A5010423987 @default.
- W2809401785 hasConcept C141071460 @default.
- W2809401785 hasConcept C154945302 @default.
- W2809401785 hasConcept C166957645 @default.
- W2809401785 hasConcept C177264268 @default.
- W2809401785 hasConcept C199360897 @default.
- W2809401785 hasConcept C205649164 @default.
- W2809401785 hasConcept C2522767166 @default.
- W2809401785 hasConcept C26517878 @default.
- W2809401785 hasConcept C2779343474 @default.
- W2809401785 hasConcept C2779370443 @default.
- W2809401785 hasConcept C38652104 @default.
- W2809401785 hasConcept C41008148 @default.
- W2809401785 hasConcept C71924100 @default.
- W2809401785 hasConceptScore W2809401785C141071460 @default.
- W2809401785 hasConceptScore W2809401785C154945302 @default.
- W2809401785 hasConceptScore W2809401785C166957645 @default.
- W2809401785 hasConceptScore W2809401785C177264268 @default.
- W2809401785 hasConceptScore W2809401785C199360897 @default.
- W2809401785 hasConceptScore W2809401785C205649164 @default.
- W2809401785 hasConceptScore W2809401785C2522767166 @default.
- W2809401785 hasConceptScore W2809401785C26517878 @default.
- W2809401785 hasConceptScore W2809401785C2779343474 @default.
- W2809401785 hasConceptScore W2809401785C2779370443 @default.
- W2809401785 hasConceptScore W2809401785C38652104 @default.
- W2809401785 hasConceptScore W2809401785C41008148 @default.
- W2809401785 hasConceptScore W2809401785C71924100 @default.
- W2809401785 hasLocation W28094017851 @default.
- W2809401785 hasOpenAccess W2809401785 @default.
- W2809401785 hasPrimaryLocation W28094017851 @default.
- W2809401785 hasRelatedWork W1833143043 @default.
- W2809401785 hasRelatedWork W2282599050 @default.
- W2809401785 hasRelatedWork W2397533386 @default.
- W2809401785 hasRelatedWork W2419412305 @default.
- W2809401785 hasRelatedWork W2556350762 @default.
- W2809401785 hasRelatedWork W2803113674 @default.
- W2809401785 hasRelatedWork W2803704088 @default.
- W2809401785 hasRelatedWork W2922538442 @default.
- W2809401785 hasRelatedWork W3022539379 @default.
- W2809401785 hasRelatedWork W3033892175 @default.
- W2809401785 hasRelatedWork W3041585401 @default.
- W2809401785 hasRelatedWork W3047057232 @default.
- W2809401785 hasRelatedWork W3048161992 @default.
- W2809401785 hasRelatedWork W3106432280 @default.
- W2809401785 hasRelatedWork W3114272811 @default.
- W2809401785 hasRelatedWork W3121202924 @default.
- W2809401785 hasRelatedWork W3157711673 @default.
- W2809401785 hasRelatedWork W3161501718 @default.
- W2809401785 hasRelatedWork W3168880123 @default.
- W2809401785 hasRelatedWork W3196648233 @default.
- W2809401785 isParatext "false" @default.
- W2809401785 isRetracted "false" @default.
- W2809401785 magId "2809401785" @default.
- W2809401785 workType "dissertation" @default.