Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809407956> ?p ?o ?g. }
- W2809407956 endingPage "277" @default.
- W2809407956 startingPage "268" @default.
- W2809407956 abstract "In 2016 alone, around 4000 people died in crashes involving trucks in the USA, with 21% of these fatalities involving only single-unit trucks. Much research has identified the underlying factors for truck crashes. However, few studies detected the factors unique to single and multiple crashes, and none have examined these underlying factors to severe truck crashes in conjunction with violation data. The current research assessed all of these factors using two approaches to improve truck safety. The first approach used ordinal logistic regression to investigate the contributory factors that increased the odds of severe single-truck and multiple-vehicle crashes, with involvement of at least one truck. The literature has indicated that past violations can be used to predict future violations and crashes. Therefore, the second approach used risky violations, related to truck crashes, to identify the contributory factors to the risky violations and truck crashes. Driver actions of failure to keep proper lane following too close and driving too fast for conditions accounted for about 40% of all the truck crashes. Therefore, the same violations as the aforementioned driver actions were included in the analysis. Based on ordinal logistic regression, the analysis for the first approach indicated that being under non-normal conditions at the time of crash, driving on dry-road condition and having a distraction in the cabin are some of the factors that increase the odds of severe single-truck crashes. On the other hand, speed compliance, alcohol involvement, and posted speed limits are some of the variables that impacted the severity of multiple-vehicle, truck-involved crashes. With the second approach, the violations related to risky driver actions, which were underlying causes of severe truck crashes, were identified and analysis was run to identify the groups at increased risk of truck-involved crashes. The results of violations indicated that being nonresident, driving off-peak hours, and driving on weekends could increase the risk of truck-involved crashes. This paper offers an insight into the capability of using violation data, in addition to crash data, in identification of possible countermeasures to reduce crash frequency." @default.
- W2809407956 created "2018-06-29" @default.
- W2809407956 creator A5006116993 @default.
- W2809407956 creator A5090517787 @default.
- W2809407956 date "2018-06-22" @default.
- W2809407956 modified "2023-10-16" @default.
- W2809407956 title "Application of multinomial and ordinal logistic regression to model injury severity of truck crashes, using violation and crash data" @default.
- W2809407956 cites W1607486952 @default.
- W2809407956 cites W1969009705 @default.
- W2809407956 cites W1972149489 @default.
- W2809407956 cites W1976303937 @default.
- W2809407956 cites W1980212448 @default.
- W2809407956 cites W1980975343 @default.
- W2809407956 cites W1981971242 @default.
- W2809407956 cites W2008565704 @default.
- W2809407956 cites W2013732826 @default.
- W2809407956 cites W2037048038 @default.
- W2809407956 cites W2037787252 @default.
- W2809407956 cites W2042626550 @default.
- W2809407956 cites W2080285081 @default.
- W2809407956 cites W2083006184 @default.
- W2809407956 cites W2108165405 @default.
- W2809407956 cites W2128070294 @default.
- W2809407956 cites W2498119267 @default.
- W2809407956 cites W2559003315 @default.
- W2809407956 cites W2566556479 @default.
- W2809407956 cites W2598057801 @default.
- W2809407956 cites W2755184604 @default.
- W2809407956 cites W2780763509 @default.
- W2809407956 cites W2787076389 @default.
- W2809407956 cites W2794872750 @default.
- W2809407956 doi "https://doi.org/10.1007/s40534-018-0166-x" @default.
- W2809407956 hasPublicationYear "2018" @default.
- W2809407956 type Work @default.
- W2809407956 sameAs 2809407956 @default.
- W2809407956 citedByCount "28" @default.
- W2809407956 countsByYear W28094079562019 @default.
- W2809407956 countsByYear W28094079562020 @default.
- W2809407956 countsByYear W28094079562021 @default.
- W2809407956 countsByYear W28094079562022 @default.
- W2809407956 countsByYear W28094079562023 @default.
- W2809407956 crossrefType "journal-article" @default.
- W2809407956 hasAuthorship W2809407956A5006116993 @default.
- W2809407956 hasAuthorship W2809407956A5090517787 @default.
- W2809407956 hasBestOaLocation W28094079561 @default.
- W2809407956 hasConcept C105795698 @default.
- W2809407956 hasConcept C110313322 @default.
- W2809407956 hasConcept C117568660 @default.
- W2809407956 hasConcept C127413603 @default.
- W2809407956 hasConcept C143095724 @default.
- W2809407956 hasConcept C151956035 @default.
- W2809407956 hasConcept C166735990 @default.
- W2809407956 hasConcept C171146098 @default.
- W2809407956 hasConcept C183469790 @default.
- W2809407956 hasConcept C190385971 @default.
- W2809407956 hasConcept C199360897 @default.
- W2809407956 hasConcept C22212356 @default.
- W2809407956 hasConcept C3017944768 @default.
- W2809407956 hasConcept C33923547 @default.
- W2809407956 hasConcept C41008148 @default.
- W2809407956 hasConcept C52121051 @default.
- W2809407956 hasConcept C71924100 @default.
- W2809407956 hasConcept C77595967 @default.
- W2809407956 hasConcept C87227347 @default.
- W2809407956 hasConcept C99454951 @default.
- W2809407956 hasConceptScore W2809407956C105795698 @default.
- W2809407956 hasConceptScore W2809407956C110313322 @default.
- W2809407956 hasConceptScore W2809407956C117568660 @default.
- W2809407956 hasConceptScore W2809407956C127413603 @default.
- W2809407956 hasConceptScore W2809407956C143095724 @default.
- W2809407956 hasConceptScore W2809407956C151956035 @default.
- W2809407956 hasConceptScore W2809407956C166735990 @default.
- W2809407956 hasConceptScore W2809407956C171146098 @default.
- W2809407956 hasConceptScore W2809407956C183469790 @default.
- W2809407956 hasConceptScore W2809407956C190385971 @default.
- W2809407956 hasConceptScore W2809407956C199360897 @default.
- W2809407956 hasConceptScore W2809407956C22212356 @default.
- W2809407956 hasConceptScore W2809407956C3017944768 @default.
- W2809407956 hasConceptScore W2809407956C33923547 @default.
- W2809407956 hasConceptScore W2809407956C41008148 @default.
- W2809407956 hasConceptScore W2809407956C52121051 @default.
- W2809407956 hasConceptScore W2809407956C71924100 @default.
- W2809407956 hasConceptScore W2809407956C77595967 @default.
- W2809407956 hasConceptScore W2809407956C87227347 @default.
- W2809407956 hasConceptScore W2809407956C99454951 @default.
- W2809407956 hasFunder F4320315307 @default.
- W2809407956 hasFunder F4320332393 @default.
- W2809407956 hasIssue "4" @default.
- W2809407956 hasLocation W28094079561 @default.
- W2809407956 hasLocation W28094079562 @default.
- W2809407956 hasOpenAccess W2809407956 @default.
- W2809407956 hasPrimaryLocation W28094079561 @default.
- W2809407956 hasRelatedWork W1480775358 @default.
- W2809407956 hasRelatedWork W1539030525 @default.
- W2809407956 hasRelatedWork W1567355495 @default.
- W2809407956 hasRelatedWork W2162086569 @default.
- W2809407956 hasRelatedWork W2572673707 @default.
- W2809407956 hasRelatedWork W2736706025 @default.