Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809421710> ?p ?o ?g. }
- W2809421710 endingPage "44" @default.
- W2809421710 startingPage "34" @default.
- W2809421710 abstract "The main productivity constraints of milling operations are self-induced vibrations, especially regenerative chatter vibrations. Two key parameters are linked to these vibrations: the depth of cut achievable without vibrations and the chatter frequency. Both parameters are linked to the dynamics of machine component excitation and the milling operation parameters. Their identification in any cutting direction in milling machine operations requires complex analytical models and mechatronic simulations, usually only applied to identify the worst cutting conditions in operating machines. This work proposes the use of machine learning techniques with no need to calculate the two above-mentioned parameters by means of a 3-step strategy. The strategy combines: 1) experimental frequency responses collected at the tool center point; 2) analytical calculations of both parameters; and, 3) different machine learning techniques. The results of these calculations can then be used to predict chatter under different combinations of milling directions and machine positions. This strategy is validated with real experiments on a bridge milling machine performing concordance roughing operations on AISI 1045 steel with a 125 mm diameter mill fitted with nine cutters at 45°, the results of which have confirmed the high variability of both parameters along the working volume. The following regression techniques are tested: artificial neural networks, regression trees and Random Forest. The results show that Random Forest ensembles provided the highest accuracy with a statistical advantage over the other machine learning models; they achieved a final accuracy of 0.95 mm for the critical depth and 7.3 Hz for the chatter frequency (RMSE) in the whole working volume and in all feed directions, applying a 10 × 10 cross validation scheme. These RMSE values are acceptable from the industrial point of view, taking into account that the critical depth of this range varies between 0.68 mm and 19.20 mm and the chatter frequency between 1.14 Hz and 65.25 Hz. Besides, Random Forest ensembles are more easily optimized than artificial neural networks (1 parameter configuration versus 210 MLPs). Additionally, tools that incorporate regression trees are interesting and highly accurate, providing immediately accessible and useful information in visual formats on critical machine performance for the design engineer." @default.
- W2809421710 created "2018-06-29" @default.
- W2809421710 creator A5011333595 @default.
- W2809421710 creator A5020400058 @default.
- W2809421710 creator A5048839475 @default.
- W2809421710 creator A5064369563 @default.
- W2809421710 date "2018-11-01" @default.
- W2809421710 modified "2023-09-26" @default.
- W2809421710 title "A machine-learning based solution for chatter prediction in heavy-duty milling machines" @default.
- W2809421710 cites W1798863697 @default.
- W2809421710 cites W1873726805 @default.
- W2809421710 cites W1971031650 @default.
- W2809421710 cites W1987306952 @default.
- W2809421710 cites W1993736216 @default.
- W2809421710 cites W1995789371 @default.
- W2809421710 cites W2001500016 @default.
- W2809421710 cites W2002803086 @default.
- W2809421710 cites W2029440824 @default.
- W2809421710 cites W2036079977 @default.
- W2809421710 cites W2049757058 @default.
- W2809421710 cites W2049875489 @default.
- W2809421710 cites W2052939368 @default.
- W2809421710 cites W2056503728 @default.
- W2809421710 cites W2057316115 @default.
- W2809421710 cites W2061082730 @default.
- W2809421710 cites W2068911452 @default.
- W2809421710 cites W2120199131 @default.
- W2809421710 cites W2121753122 @default.
- W2809421710 cites W2133990480 @default.
- W2809421710 cites W2167030381 @default.
- W2809421710 cites W2167218164 @default.
- W2809421710 cites W2199798999 @default.
- W2809421710 cites W2328864537 @default.
- W2809421710 cites W2531926684 @default.
- W2809421710 cites W2589280785 @default.
- W2809421710 cites W2614486471 @default.
- W2809421710 cites W2734343867 @default.
- W2809421710 cites W2765442053 @default.
- W2809421710 cites W2767000049 @default.
- W2809421710 cites W2767112209 @default.
- W2809421710 cites W2773444615 @default.
- W2809421710 cites W2791811238 @default.
- W2809421710 cites W2802415864 @default.
- W2809421710 cites W2911964244 @default.
- W2809421710 cites W4212883601 @default.
- W2809421710 cites W1787460273 @default.
- W2809421710 doi "https://doi.org/10.1016/j.measurement.2018.06.028" @default.
- W2809421710 hasPublicationYear "2018" @default.
- W2809421710 type Work @default.
- W2809421710 sameAs 2809421710 @default.
- W2809421710 citedByCount "38" @default.
- W2809421710 countsByYear W28094217102018 @default.
- W2809421710 countsByYear W28094217102020 @default.
- W2809421710 countsByYear W28094217102021 @default.
- W2809421710 countsByYear W28094217102022 @default.
- W2809421710 countsByYear W28094217102023 @default.
- W2809421710 crossrefType "journal-article" @default.
- W2809421710 hasAuthorship W2809421710A5011333595 @default.
- W2809421710 hasAuthorship W2809421710A5020400058 @default.
- W2809421710 hasAuthorship W2809421710A5048839475 @default.
- W2809421710 hasAuthorship W2809421710A5064369563 @default.
- W2809421710 hasBestOaLocation W28094217102 @default.
- W2809421710 hasConcept C119857082 @default.
- W2809421710 hasConcept C121332964 @default.
- W2809421710 hasConcept C127413603 @default.
- W2809421710 hasConcept C154945302 @default.
- W2809421710 hasConcept C198394728 @default.
- W2809421710 hasConcept C24890656 @default.
- W2809421710 hasConcept C41008148 @default.
- W2809421710 hasConcept C50644808 @default.
- W2809421710 hasConcept C5941749 @default.
- W2809421710 hasConcept C78519656 @default.
- W2809421710 hasConceptScore W2809421710C119857082 @default.
- W2809421710 hasConceptScore W2809421710C121332964 @default.
- W2809421710 hasConceptScore W2809421710C127413603 @default.
- W2809421710 hasConceptScore W2809421710C154945302 @default.
- W2809421710 hasConceptScore W2809421710C198394728 @default.
- W2809421710 hasConceptScore W2809421710C24890656 @default.
- W2809421710 hasConceptScore W2809421710C41008148 @default.
- W2809421710 hasConceptScore W2809421710C50644808 @default.
- W2809421710 hasConceptScore W2809421710C5941749 @default.
- W2809421710 hasConceptScore W2809421710C78519656 @default.
- W2809421710 hasFunder F4320321043 @default.
- W2809421710 hasLocation W28094217101 @default.
- W2809421710 hasLocation W28094217102 @default.
- W2809421710 hasLocation W28094217103 @default.
- W2809421710 hasOpenAccess W2809421710 @default.
- W2809421710 hasPrimaryLocation W28094217101 @default.
- W2809421710 hasRelatedWork W1998420868 @default.
- W2809421710 hasRelatedWork W2003419333 @default.
- W2809421710 hasRelatedWork W2036834710 @default.
- W2809421710 hasRelatedWork W2347259833 @default.
- W2809421710 hasRelatedWork W2363069393 @default.
- W2809421710 hasRelatedWork W2388990390 @default.
- W2809421710 hasRelatedWork W3110464209 @default.
- W2809421710 hasRelatedWork W3118377580 @default.
- W2809421710 hasRelatedWork W3185821938 @default.
- W2809421710 hasRelatedWork W1629725936 @default.