Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809435643> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2809435643 abstract "We consider the family of convex bodies obtained from an origin symmetric convex body $K$ by multiplication with diagonal matrices, by forming Minkowski sums of the transformed sets, and by taking limits in the Hausdorff metric. Support functions of these convex bodies arise by an integral transform of measures on the family of diagonal matrices, equivalently, on Euclidean space, which we call $K$-transform. In the special case, if $K$ is a segment not lying on any coordinate hyperplane, one obtains the family of zonoids and the cosine transform. In this case two facts are known: the vector space generated by support functions of zonoids is dense in the family of support functions of origin symmetric convex bodies; and the cosine transform is injective. We show that these two properties are equivalent for general $K$. For $K$ being a generalised zonoid, we determine conditions that ensure the injectivity of the $K$-transform. Relations to mixed volumes and to a geometric description of one-sided stable laws are discussed. The later probabilistic application gives rise to a family of convex bodies obtained as limits of sums of diagonally scaled $ell_p$-balls." @default.
- W2809435643 created "2018-06-29" @default.
- W2809435643 creator A5032099577 @default.
- W2809435643 creator A5072673224 @default.
- W2809435643 date "2018-06-21" @default.
- W2809435643 modified "2023-09-27" @default.
- W2809435643 title "Diagonal Minkowski classes, zonoid equivalence, and stable laws" @default.
- W2809435643 cites W126687069 @default.
- W2809435643 cites W1571966798 @default.
- W2809435643 cites W1578430072 @default.
- W2809435643 cites W1969705529 @default.
- W2809435643 cites W1993426910 @default.
- W2809435643 cites W1995790567 @default.
- W2809435643 cites W1999334273 @default.
- W2809435643 cites W2005316996 @default.
- W2809435643 cites W2017170340 @default.
- W2809435643 cites W2058367830 @default.
- W2809435643 cites W2116882631 @default.
- W2809435643 cites W2130444456 @default.
- W2809435643 cites W2493409434 @default.
- W2809435643 cites W2964275473 @default.
- W2809435643 cites W3183085784 @default.
- W2809435643 hasPublicationYear "2018" @default.
- W2809435643 type Work @default.
- W2809435643 sameAs 2809435643 @default.
- W2809435643 citedByCount "0" @default.
- W2809435643 crossrefType "posted-content" @default.
- W2809435643 hasAuthorship W2809435643A5032099577 @default.
- W2809435643 hasAuthorship W2809435643A5072673224 @default.
- W2809435643 hasConcept C112680207 @default.
- W2809435643 hasConcept C114614502 @default.
- W2809435643 hasConcept C130367717 @default.
- W2809435643 hasConcept C134306372 @default.
- W2809435643 hasConcept C134912446 @default.
- W2809435643 hasConcept C186450821 @default.
- W2809435643 hasConcept C202444582 @default.
- W2809435643 hasConcept C206194317 @default.
- W2809435643 hasConcept C2524010 @default.
- W2809435643 hasConcept C33923547 @default.
- W2809435643 hasConcept C68693459 @default.
- W2809435643 hasConcept C79464548 @default.
- W2809435643 hasConceptScore W2809435643C112680207 @default.
- W2809435643 hasConceptScore W2809435643C114614502 @default.
- W2809435643 hasConceptScore W2809435643C130367717 @default.
- W2809435643 hasConceptScore W2809435643C134306372 @default.
- W2809435643 hasConceptScore W2809435643C134912446 @default.
- W2809435643 hasConceptScore W2809435643C186450821 @default.
- W2809435643 hasConceptScore W2809435643C202444582 @default.
- W2809435643 hasConceptScore W2809435643C206194317 @default.
- W2809435643 hasConceptScore W2809435643C2524010 @default.
- W2809435643 hasConceptScore W2809435643C33923547 @default.
- W2809435643 hasConceptScore W2809435643C68693459 @default.
- W2809435643 hasConceptScore W2809435643C79464548 @default.
- W2809435643 hasLocation W28094356431 @default.
- W2809435643 hasOpenAccess W2809435643 @default.
- W2809435643 hasPrimaryLocation W28094356431 @default.
- W2809435643 hasRelatedWork W1827221056 @default.
- W2809435643 hasRelatedWork W1992977001 @default.
- W2809435643 hasRelatedWork W2072488207 @default.
- W2809435643 hasRelatedWork W2115591249 @default.
- W2809435643 hasRelatedWork W2181614601 @default.
- W2809435643 hasRelatedWork W2269642373 @default.
- W2809435643 hasRelatedWork W2271848893 @default.
- W2809435643 hasRelatedWork W2321505429 @default.
- W2809435643 hasRelatedWork W2346901565 @default.
- W2809435643 hasRelatedWork W2479596153 @default.
- W2809435643 hasRelatedWork W2606569189 @default.
- W2809435643 hasRelatedWork W2890573881 @default.
- W2809435643 hasRelatedWork W2897734364 @default.
- W2809435643 hasRelatedWork W2952996860 @default.
- W2809435643 hasRelatedWork W2964134516 @default.
- W2809435643 hasRelatedWork W2967333146 @default.
- W2809435643 hasRelatedWork W3083392340 @default.
- W2809435643 hasRelatedWork W3104190763 @default.
- W2809435643 hasRelatedWork W94334732 @default.
- W2809435643 hasRelatedWork W2339114889 @default.
- W2809435643 isParatext "false" @default.
- W2809435643 isRetracted "false" @default.
- W2809435643 magId "2809435643" @default.
- W2809435643 workType "article" @default.