Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809457377> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2809457377 abstract "Malware detection at the hardware level has emerged recently as a promising solution to improve the security of computing systems. Hardware-based malware detectors take advantage of Machine Learning (ML) classifiers to detect pattern of malicious applications at run-time. These ML classifiers are trained using low-level features such as processor Hardware Performance Counters (HPCs) data which are captured at run-time to appropriately represent the application behaviour. Recent studies show the potential of standard ML-based classifiers for detecting malware using analysis of large number of microarchitectural events, more than the very limited number of HPC registers available in today's microprocessors which varies from 2 to 8. This results in executing the application more than once to collect the required data, which in turn makes the solution less practical for effective run-time malware detection. Our results show a clear trade-off between the performance of standard ML classifiers and the number and diversity of HPCs available in modern microprocessors. This paper proposes a machine learning-based solution to break this trade-off to realize effective run-time detection of malware. We propose ensemble learning techniques to improve the performance of the hardware-based malware detectors despite using a very small number of microarchitectural events that are captured at run-time by existing HPCs, eliminating the need to run an application several times. For this purpose, eight robust machine learning models and two well-known ensemble learning classifiers applied on all studied ML models (sixteen in total) are implemented for malware detection and precisely compared and characterized in terms of detection accuracy, robustness, performance (accuracy×robustness), and hardware overheads. The experimental results show that the proposed ensemble learning-based malware detection with just 2 HPCs using ensemble technique outperforms standard classifiers with 8 HPCs by up to 17%. In addition, it can match the robustness and performance of standard ML-based detectors with 16 HPCs while using only 4 HPCs allowing effective run-time detection of malware." @default.
- W2809457377 created "2018-06-29" @default.
- W2809457377 creator A5006274160 @default.
- W2809457377 creator A5047382437 @default.
- W2809457377 creator A5051940611 @default.
- W2809457377 creator A5060036961 @default.
- W2809457377 creator A5076812824 @default.
- W2809457377 creator A5080844858 @default.
- W2809457377 date "2018-06-24" @default.
- W2809457377 modified "2023-10-17" @default.
- W2809457377 title "Ensemble learning for effective run-time hardware-based malware detection" @default.
- W2809457377 cites W1988790447 @default.
- W2809457377 cites W2058315483 @default.
- W2809457377 cites W2088503757 @default.
- W2809457377 cites W2133990480 @default.
- W2809457377 cites W2138471478 @default.
- W2809457377 cites W2292977173 @default.
- W2809457377 cites W2625408821 @default.
- W2809457377 cites W2768424695 @default.
- W2809457377 cites W2791899846 @default.
- W2809457377 cites W2912934387 @default.
- W2809457377 cites W2950774332 @default.
- W2809457377 cites W3007346474 @default.
- W2809457377 doi "https://doi.org/10.1145/3195970.3196047" @default.
- W2809457377 hasPublicationYear "2018" @default.
- W2809457377 type Work @default.
- W2809457377 sameAs 2809457377 @default.
- W2809457377 citedByCount "42" @default.
- W2809457377 countsByYear W28094573772017 @default.
- W2809457377 countsByYear W28094573772018 @default.
- W2809457377 countsByYear W28094573772019 @default.
- W2809457377 countsByYear W28094573772020 @default.
- W2809457377 countsByYear W28094573772021 @default.
- W2809457377 countsByYear W28094573772022 @default.
- W2809457377 countsByYear W28094573772023 @default.
- W2809457377 crossrefType "proceedings-article" @default.
- W2809457377 hasAuthorship W2809457377A5006274160 @default.
- W2809457377 hasAuthorship W2809457377A5047382437 @default.
- W2809457377 hasAuthorship W2809457377A5051940611 @default.
- W2809457377 hasAuthorship W2809457377A5060036961 @default.
- W2809457377 hasAuthorship W2809457377A5076812824 @default.
- W2809457377 hasAuthorship W2809457377A5080844858 @default.
- W2809457377 hasConcept C111919701 @default.
- W2809457377 hasConcept C119857082 @default.
- W2809457377 hasConcept C149635348 @default.
- W2809457377 hasConcept C154945302 @default.
- W2809457377 hasConcept C2989134064 @default.
- W2809457377 hasConcept C41008148 @default.
- W2809457377 hasConcept C45942800 @default.
- W2809457377 hasConcept C541664917 @default.
- W2809457377 hasConceptScore W2809457377C111919701 @default.
- W2809457377 hasConceptScore W2809457377C119857082 @default.
- W2809457377 hasConceptScore W2809457377C149635348 @default.
- W2809457377 hasConceptScore W2809457377C154945302 @default.
- W2809457377 hasConceptScore W2809457377C2989134064 @default.
- W2809457377 hasConceptScore W2809457377C41008148 @default.
- W2809457377 hasConceptScore W2809457377C45942800 @default.
- W2809457377 hasConceptScore W2809457377C541664917 @default.
- W2809457377 hasLocation W28094573771 @default.
- W2809457377 hasOpenAccess W2809457377 @default.
- W2809457377 hasPrimaryLocation W28094573771 @default.
- W2809457377 hasRelatedWork W1764168690 @default.
- W2809457377 hasRelatedWork W2753240997 @default.
- W2809457377 hasRelatedWork W2775776836 @default.
- W2809457377 hasRelatedWork W3152891574 @default.
- W2809457377 hasRelatedWork W3183826413 @default.
- W2809457377 hasRelatedWork W4232632923 @default.
- W2809457377 hasRelatedWork W4284893819 @default.
- W2809457377 hasRelatedWork W4316881845 @default.
- W2809457377 hasRelatedWork W4323520309 @default.
- W2809457377 hasRelatedWork W2097492617 @default.
- W2809457377 isParatext "false" @default.
- W2809457377 isRetracted "false" @default.
- W2809457377 magId "2809457377" @default.
- W2809457377 workType "article" @default.