Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809497023> ?p ?o ?g. }
- W2809497023 abstract "This paper proposes a novel algorithm, named Non-Convex Calibrated Multi-Task Learning (NC-CMTL), for learning multiple related regression tasks jointly. Instead of utilizing the nuclear norm, NC-CMTL adopts a non-convex low rank regularizer to explore the shared information among different tasks. In addition, considering that the regularization parameter for each regression task desponds on its noise level, we replace the least squares loss function by square-root loss function. Computationally, as proposed model has a nonsmooth loss function and a non-convex regularization term, we construct an efcient re-weighted method to optimize it. Theoretically, we frst present the convergence analysis of constructed method, and then prove that the derived solution is a stationary point of original problem. Particularly, the regularizer and optimization method used in this paper are also suitable for other rank minimization problems. Numerical experiments on both synthetic and real data illustrate the advantages of NC-CMTL over several state-of-the-art methods." @default.
- W2809497023 created "2018-06-29" @default.
- W2809497023 creator A5003222421 @default.
- W2809497023 creator A5011569101 @default.
- W2809497023 creator A5068918243 @default.
- W2809497023 date "2018-07-19" @default.
- W2809497023 modified "2023-10-12" @default.
- W2809497023 title "Calibrated Multi-Task Learning" @default.
- W2809497023 cites W1986744686 @default.
- W2809497023 cites W2009746375 @default.
- W2809497023 cites W2018096278 @default.
- W2809497023 cites W2031250362 @default.
- W2809497023 cites W2034295546 @default.
- W2809497023 cites W2045704273 @default.
- W2809497023 cites W2065180801 @default.
- W2809497023 cites W2084549025 @default.
- W2809497023 cites W2089480358 @default.
- W2809497023 cites W2102630986 @default.
- W2809497023 cites W2107861471 @default.
- W2809497023 cites W2114466964 @default.
- W2809497023 cites W2119883478 @default.
- W2809497023 cites W2121698996 @default.
- W2809497023 cites W2126589555 @default.
- W2809497023 cites W2130903752 @default.
- W2809497023 cites W2134332047 @default.
- W2809497023 cites W2157751286 @default.
- W2809497023 cites W2169884321 @default.
- W2809497023 cites W2561587488 @default.
- W2809497023 cites W3023386002 @default.
- W2809497023 doi "https://doi.org/10.1145/3219819.3219951" @default.
- W2809497023 hasPublicationYear "2018" @default.
- W2809497023 type Work @default.
- W2809497023 sameAs 2809497023 @default.
- W2809497023 citedByCount "20" @default.
- W2809497023 countsByYear W28094970232018 @default.
- W2809497023 countsByYear W28094970232019 @default.
- W2809497023 countsByYear W28094970232020 @default.
- W2809497023 countsByYear W28094970232021 @default.
- W2809497023 countsByYear W28094970232022 @default.
- W2809497023 countsByYear W28094970232023 @default.
- W2809497023 crossrefType "proceedings-article" @default.
- W2809497023 hasAuthorship W2809497023A5003222421 @default.
- W2809497023 hasAuthorship W2809497023A5011569101 @default.
- W2809497023 hasAuthorship W2809497023A5068918243 @default.
- W2809497023 hasConcept C105795698 @default.
- W2809497023 hasConcept C111110010 @default.
- W2809497023 hasConcept C112680207 @default.
- W2809497023 hasConcept C11413529 @default.
- W2809497023 hasConcept C114614502 @default.
- W2809497023 hasConcept C121332964 @default.
- W2809497023 hasConcept C126255220 @default.
- W2809497023 hasConcept C134306372 @default.
- W2809497023 hasConcept C14036430 @default.
- W2809497023 hasConcept C145446738 @default.
- W2809497023 hasConcept C147764199 @default.
- W2809497023 hasConcept C154945302 @default.
- W2809497023 hasConcept C157972887 @default.
- W2809497023 hasConcept C162324750 @default.
- W2809497023 hasConcept C164226766 @default.
- W2809497023 hasConcept C187736073 @default.
- W2809497023 hasConcept C189237950 @default.
- W2809497023 hasConcept C189430467 @default.
- W2809497023 hasConcept C2524010 @default.
- W2809497023 hasConcept C2776135515 @default.
- W2809497023 hasConcept C2777303404 @default.
- W2809497023 hasConcept C2780451532 @default.
- W2809497023 hasConcept C28006648 @default.
- W2809497023 hasConcept C33923547 @default.
- W2809497023 hasConcept C41008148 @default.
- W2809497023 hasConcept C50522688 @default.
- W2809497023 hasConcept C61797465 @default.
- W2809497023 hasConcept C62520636 @default.
- W2809497023 hasConcept C78458016 @default.
- W2809497023 hasConcept C79248915 @default.
- W2809497023 hasConcept C83546350 @default.
- W2809497023 hasConcept C86037889 @default.
- W2809497023 hasConcept C86803240 @default.
- W2809497023 hasConceptScore W2809497023C105795698 @default.
- W2809497023 hasConceptScore W2809497023C111110010 @default.
- W2809497023 hasConceptScore W2809497023C112680207 @default.
- W2809497023 hasConceptScore W2809497023C11413529 @default.
- W2809497023 hasConceptScore W2809497023C114614502 @default.
- W2809497023 hasConceptScore W2809497023C121332964 @default.
- W2809497023 hasConceptScore W2809497023C126255220 @default.
- W2809497023 hasConceptScore W2809497023C134306372 @default.
- W2809497023 hasConceptScore W2809497023C14036430 @default.
- W2809497023 hasConceptScore W2809497023C145446738 @default.
- W2809497023 hasConceptScore W2809497023C147764199 @default.
- W2809497023 hasConceptScore W2809497023C154945302 @default.
- W2809497023 hasConceptScore W2809497023C157972887 @default.
- W2809497023 hasConceptScore W2809497023C162324750 @default.
- W2809497023 hasConceptScore W2809497023C164226766 @default.
- W2809497023 hasConceptScore W2809497023C187736073 @default.
- W2809497023 hasConceptScore W2809497023C189237950 @default.
- W2809497023 hasConceptScore W2809497023C189430467 @default.
- W2809497023 hasConceptScore W2809497023C2524010 @default.
- W2809497023 hasConceptScore W2809497023C2776135515 @default.
- W2809497023 hasConceptScore W2809497023C2777303404 @default.
- W2809497023 hasConceptScore W2809497023C2780451532 @default.
- W2809497023 hasConceptScore W2809497023C28006648 @default.