Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809504405> ?p ?o ?g. }
- W2809504405 endingPage "012042" @default.
- W2809504405 startingPage "012042" @default.
- W2809504405 abstract "The most time-honoured tool for understanding the processes of the human past is represented by archaeological excavation. By examining an area at discrete temporal periods, archaeologists are literally able to look backwards in time: they can analyse incomplete material records in order to understand and reconstruct the cultural history of an area at particular moments in time. Since the digging process destroys the site forever, great care must be paid during both the excavation and the documentation. In general, after a stratum has been completely excavated, both the floors and walls are cleaned and made ready for documentation. Photos of both the sides and bedrock of a given excavation are collected, and several sketches of what the archaeologists have seen in the trenches are made. In these drawings are delineated the features and shapes of artefacts on the horizontal plane. In addition, depending on the colours and similarities of the textures, drawing are also made of the archaeological layers. This approach is time-consuming, is affected by human ability, and does not make possible a prompt digitization of the results. Within this context, the automatized identification of archaeological stratigraphy during excavation work is welcomed by archaeologists. Here, a k-means unsupervised machine learning algorithm has been used for colour clustering digital images of excavation sites. The algorithm that we have developed attempts to enhance the colour similarity while keeping the colours separate one from another as much as possible. The main idea is that pixels belonging to the same colour cluster are a part of the same layer. Once the layer has been identified, a statistical approach based on Haralick features is used to characterize each strata in terms of texture. Unsupervised machine learning combined with texture analysis could become a good practice in speeding up the documentation work of archaeologists and paving the way towards the creation of an automated archaeologist." @default.
- W2809504405 created "2018-06-29" @default.
- W2809504405 creator A5013884930 @default.
- W2809504405 creator A5042153191 @default.
- W2809504405 creator A5045181180 @default.
- W2809504405 creator A5091909602 @default.
- W2809504405 date "2018-06-01" @default.
- W2809504405 modified "2023-10-18" @default.
- W2809504405 title "Discrimination of soil texture and contour recognitions during archaeological excavation using Machine Learning" @default.
- W2809504405 cites W1964182741 @default.
- W2809504405 cites W1974546285 @default.
- W2809504405 cites W1993055397 @default.
- W2809504405 cites W2005210704 @default.
- W2809504405 cites W2011617960 @default.
- W2809504405 cites W2015516365 @default.
- W2809504405 cites W2027442956 @default.
- W2809504405 cites W2028646889 @default.
- W2809504405 cites W2044465660 @default.
- W2809504405 cites W2047999183 @default.
- W2809504405 cites W2066651513 @default.
- W2809504405 cites W2077960675 @default.
- W2809504405 cites W2098421747 @default.
- W2809504405 cites W2111972246 @default.
- W2809504405 cites W2171371215 @default.
- W2809504405 cites W2218047931 @default.
- W2809504405 cites W2547641549 @default.
- W2809504405 cites W2595144186 @default.
- W2809504405 cites W2615396381 @default.
- W2809504405 cites W2704364523 @default.
- W2809504405 cites W4229698880 @default.
- W2809504405 cites W4232800848 @default.
- W2809504405 cites W643015533 @default.
- W2809504405 doi "https://doi.org/10.1088/1757-899x/364/1/012042" @default.
- W2809504405 hasPublicationYear "2018" @default.
- W2809504405 type Work @default.
- W2809504405 sameAs 2809504405 @default.
- W2809504405 citedByCount "2" @default.
- W2809504405 countsByYear W28095044052018 @default.
- W2809504405 countsByYear W28095044052022 @default.
- W2809504405 crossrefType "journal-article" @default.
- W2809504405 hasAuthorship W2809504405A5013884930 @default.
- W2809504405 hasAuthorship W2809504405A5042153191 @default.
- W2809504405 hasAuthorship W2809504405A5045181180 @default.
- W2809504405 hasAuthorship W2809504405A5091909602 @default.
- W2809504405 hasBestOaLocation W28095044051 @default.
- W2809504405 hasConcept C109281948 @default.
- W2809504405 hasConcept C111919701 @default.
- W2809504405 hasConcept C115961682 @default.
- W2809504405 hasConcept C127313418 @default.
- W2809504405 hasConcept C137527640 @default.
- W2809504405 hasConcept C151730666 @default.
- W2809504405 hasConcept C154945302 @default.
- W2809504405 hasConcept C166957645 @default.
- W2809504405 hasConcept C199360897 @default.
- W2809504405 hasConcept C2779080342 @default.
- W2809504405 hasConcept C2779269003 @default.
- W2809504405 hasConcept C2779308522 @default.
- W2809504405 hasConcept C2779343474 @default.
- W2809504405 hasConcept C2781195486 @default.
- W2809504405 hasConcept C31858485 @default.
- W2809504405 hasConcept C31972630 @default.
- W2809504405 hasConcept C41008148 @default.
- W2809504405 hasConcept C56666940 @default.
- W2809504405 hasConcept C77928131 @default.
- W2809504405 hasConcept C95457728 @default.
- W2809504405 hasConcept C98045186 @default.
- W2809504405 hasConceptScore W2809504405C109281948 @default.
- W2809504405 hasConceptScore W2809504405C111919701 @default.
- W2809504405 hasConceptScore W2809504405C115961682 @default.
- W2809504405 hasConceptScore W2809504405C127313418 @default.
- W2809504405 hasConceptScore W2809504405C137527640 @default.
- W2809504405 hasConceptScore W2809504405C151730666 @default.
- W2809504405 hasConceptScore W2809504405C154945302 @default.
- W2809504405 hasConceptScore W2809504405C166957645 @default.
- W2809504405 hasConceptScore W2809504405C199360897 @default.
- W2809504405 hasConceptScore W2809504405C2779080342 @default.
- W2809504405 hasConceptScore W2809504405C2779269003 @default.
- W2809504405 hasConceptScore W2809504405C2779308522 @default.
- W2809504405 hasConceptScore W2809504405C2779343474 @default.
- W2809504405 hasConceptScore W2809504405C2781195486 @default.
- W2809504405 hasConceptScore W2809504405C31858485 @default.
- W2809504405 hasConceptScore W2809504405C31972630 @default.
- W2809504405 hasConceptScore W2809504405C41008148 @default.
- W2809504405 hasConceptScore W2809504405C56666940 @default.
- W2809504405 hasConceptScore W2809504405C77928131 @default.
- W2809504405 hasConceptScore W2809504405C95457728 @default.
- W2809504405 hasConceptScore W2809504405C98045186 @default.
- W2809504405 hasLocation W28095044051 @default.
- W2809504405 hasLocation W28095044052 @default.
- W2809504405 hasOpenAccess W2809504405 @default.
- W2809504405 hasPrimaryLocation W28095044051 @default.
- W2809504405 hasRelatedWork W2003234343 @default.
- W2809504405 hasRelatedWork W2004504846 @default.
- W2809504405 hasRelatedWork W2038767075 @default.
- W2809504405 hasRelatedWork W2261146659 @default.
- W2809504405 hasRelatedWork W2326277362 @default.
- W2809504405 hasRelatedWork W2605416717 @default.
- W2809504405 hasRelatedWork W3103846989 @default.