Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809670232> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2809670232 abstract "Government regulation of individual and business activity is part and parcel of modern society. But many businesses face difficulties in understanding and navigating the legal hurdles, rules, and uncertainty that come with modern regulation. Many governments in Canada have taken steps to reduce this burden by streamlining regulation and cutting unnecessary red tape. In this Commentary, I explore how regulators can continue this trend toward more efficient and effective regulation: by embracing data analytics and machine-learning tools. Big data, analytics and machine learning offer new and difficult challenges for regulators who oversee how many businesses make decisions. But regulators can also benefit from effective use of data science. Some of these benefits can be realized almost immediately by using data that the regulators already have. First, regulators can better predict who should and should not be investigated. A regulator needs to make choices about how to allocate and prioritize scarce resources. With the right data and appropriate data analytics, predictions can be made about where to best place investigation resources. Second, regulators must make choices over which cases to prosecute. Regulators should not waste resources litigating cases they are likely to lose. Instead, regulators should put resources only toward cases that they are likely to win. Regulators can turn to the data and use machine learning to predict how a court would resolve a particular problem. Moving further into the future, big data and machine learning will change the way that laws and regulations will be consumed and produced. Lawmakers will have greater ability to provide relevant information before the individual or business acts, rather than waiting to adjudicate after they have acted. Businesses will seek prior authorization for many more regulated actions. Furthermore, the time and cost for regulators to respond to the queries will fall drastically. Instead of relying primarily on vague guidelines, regulators will be able to offer more expedient and personalized responses. There are enormous benefits to regulators making decisions before individuals and business act. Advance rulings, given before investments are made, provide certain outcomes and reduce the likelihood of wasted investments. There are, of course, a number of potential barriers and issues that may arise. These include: the quality of the data, accountability and due process, the need for transparency, privacy and the reluctance to share data, the benefits of uncertainty, and the stability of social views and goals." @default.
- W2809670232 created "2018-06-29" @default.
- W2809670232 creator A5010491754 @default.
- W2809670232 date "2018-01-01" @default.
- W2809670232 modified "2023-10-14" @default.
- W2809670232 title "Regulatory Reform in Ontario: Machine Learning and Regulation" @default.
- W2809670232 cites W2102256472 @default.
- W2809670232 cites W2203167467 @default.
- W2809670232 cites W2371804352 @default.
- W2809670232 cites W2540949022 @default.
- W2809670232 cites W2551317447 @default.
- W2809670232 cites W2610886376 @default.
- W2809670232 cites W2788007910 @default.
- W2809670232 cites W2902072811 @default.
- W2809670232 cites W2906054795 @default.
- W2809670232 cites W2952867847 @default.
- W2809670232 cites W2964099165 @default.
- W2809670232 cites W3122334902 @default.
- W2809670232 cites W3124967797 @default.
- W2809670232 cites W3133938208 @default.
- W2809670232 cites W3161554143 @default.
- W2809670232 cites W3181196949 @default.
- W2809670232 cites W3185726699 @default.
- W2809670232 cites W4247188100 @default.
- W2809670232 cites W4247767351 @default.
- W2809670232 doi "https://doi.org/10.2139/ssrn.3156646" @default.
- W2809670232 hasPublicationYear "2018" @default.
- W2809670232 type Work @default.
- W2809670232 sameAs 2809670232 @default.
- W2809670232 citedByCount "0" @default.
- W2809670232 crossrefType "journal-article" @default.
- W2809670232 hasAuthorship W2809670232A5010491754 @default.
- W2809670232 hasConcept C124101348 @default.
- W2809670232 hasConcept C138885662 @default.
- W2809670232 hasConcept C144133560 @default.
- W2809670232 hasConcept C154945302 @default.
- W2809670232 hasConcept C2522767166 @default.
- W2809670232 hasConcept C2778137410 @default.
- W2809670232 hasConcept C41008148 @default.
- W2809670232 hasConcept C41895202 @default.
- W2809670232 hasConcept C75684735 @default.
- W2809670232 hasConcept C79158427 @default.
- W2809670232 hasConceptScore W2809670232C124101348 @default.
- W2809670232 hasConceptScore W2809670232C138885662 @default.
- W2809670232 hasConceptScore W2809670232C144133560 @default.
- W2809670232 hasConceptScore W2809670232C154945302 @default.
- W2809670232 hasConceptScore W2809670232C2522767166 @default.
- W2809670232 hasConceptScore W2809670232C2778137410 @default.
- W2809670232 hasConceptScore W2809670232C41008148 @default.
- W2809670232 hasConceptScore W2809670232C41895202 @default.
- W2809670232 hasConceptScore W2809670232C75684735 @default.
- W2809670232 hasConceptScore W2809670232C79158427 @default.
- W2809670232 hasLocation W28096702321 @default.
- W2809670232 hasOpenAccess W2809670232 @default.
- W2809670232 hasPrimaryLocation W28096702321 @default.
- W2809670232 hasRelatedWork W1965984768 @default.
- W2809670232 hasRelatedWork W1982479794 @default.
- W2809670232 hasRelatedWork W1994754757 @default.
- W2809670232 hasRelatedWork W2031256238 @default.
- W2809670232 hasRelatedWork W2036055294 @default.
- W2809670232 hasRelatedWork W2091333743 @default.
- W2809670232 hasRelatedWork W2128453280 @default.
- W2809670232 hasRelatedWork W2992541182 @default.
- W2809670232 hasRelatedWork W3121551513 @default.
- W2809670232 hasRelatedWork W3124846508 @default.
- W2809670232 isParatext "false" @default.
- W2809670232 isRetracted "false" @default.
- W2809670232 magId "2809670232" @default.
- W2809670232 workType "article" @default.