Matches in SemOpenAlex for { <https://semopenalex.org/work/W2809931848> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2809931848 abstract "Time series forecasting was for a long time based on the principle that simple methods in forecast accuracy exceed machine learning methods. However, simple models cannot use the various mutual dependencies and information offered by time series, content-related or similar to those that are subject to prediction. The occurrence of massive data is also connected with the collecting of enormous amounts of time series, but in using simple, traditional methods, their high potential for enhancing forecast accuracy remains untapped.The opportunity to bridge this gap comes with neural networks. To process sequential data, recurrent neural networks are used in forecasting that can use mutual dependencies of points in time. Among recurrent neural networks, long short-term memory neural networks are considered as especially successful in time series forecasting. The paper focuses on the building and optimization of this neural network type. Our purpose was to improve forecast accuracy in time series forecasting, understanding at the same time why and to what degree individual factors contribute to this improvement. The forecasting was applied to the number of clicks on Facebook ads. First, we analysed various combinations of time series processing, discovering that they might influence forecast accuracy improvements. Neural networks learned using a group of related time series and the forecasts were compared to the traditional time series forecasting approaches ARIMA, ARIMAX and VAR. We also researched a number of options to improve forecast effectiveness with neural networks using similar time series. As expected, we found that with adequate data processing, long short-term memory neural networks achieve greater forecast accuracy compared to the traditional models. We demonstrated that forecasting can be further improved using similar time series, however, this approach is not always helpful." @default.
- W2809931848 created "2018-07-10" @default.
- W2809931848 creator A5047584611 @default.
- W2809931848 date "2018-06-22" @default.
- W2809931848 modified "2023-09-26" @default.
- W2809931848 title "Time series forecasting with long short-term memory neural networks" @default.
- W2809931848 hasPublicationYear "2018" @default.
- W2809931848 type Work @default.
- W2809931848 sameAs 2809931848 @default.
- W2809931848 citedByCount "0" @default.
- W2809931848 crossrefType "dissertation" @default.
- W2809931848 hasAuthorship W2809931848A5047584611 @default.
- W2809931848 hasConcept C111472728 @default.
- W2809931848 hasConcept C111919701 @default.
- W2809931848 hasConcept C119857082 @default.
- W2809931848 hasConcept C121332964 @default.
- W2809931848 hasConcept C124101348 @default.
- W2809931848 hasConcept C138885662 @default.
- W2809931848 hasConcept C143724316 @default.
- W2809931848 hasConcept C147168706 @default.
- W2809931848 hasConcept C151406439 @default.
- W2809931848 hasConcept C151730666 @default.
- W2809931848 hasConcept C154945302 @default.
- W2809931848 hasConcept C24338571 @default.
- W2809931848 hasConcept C2780586882 @default.
- W2809931848 hasConcept C41008148 @default.
- W2809931848 hasConcept C50644808 @default.
- W2809931848 hasConcept C61797465 @default.
- W2809931848 hasConcept C62520636 @default.
- W2809931848 hasConcept C86803240 @default.
- W2809931848 hasConcept C98045186 @default.
- W2809931848 hasConceptScore W2809931848C111472728 @default.
- W2809931848 hasConceptScore W2809931848C111919701 @default.
- W2809931848 hasConceptScore W2809931848C119857082 @default.
- W2809931848 hasConceptScore W2809931848C121332964 @default.
- W2809931848 hasConceptScore W2809931848C124101348 @default.
- W2809931848 hasConceptScore W2809931848C138885662 @default.
- W2809931848 hasConceptScore W2809931848C143724316 @default.
- W2809931848 hasConceptScore W2809931848C147168706 @default.
- W2809931848 hasConceptScore W2809931848C151406439 @default.
- W2809931848 hasConceptScore W2809931848C151730666 @default.
- W2809931848 hasConceptScore W2809931848C154945302 @default.
- W2809931848 hasConceptScore W2809931848C24338571 @default.
- W2809931848 hasConceptScore W2809931848C2780586882 @default.
- W2809931848 hasConceptScore W2809931848C41008148 @default.
- W2809931848 hasConceptScore W2809931848C50644808 @default.
- W2809931848 hasConceptScore W2809931848C61797465 @default.
- W2809931848 hasConceptScore W2809931848C62520636 @default.
- W2809931848 hasConceptScore W2809931848C86803240 @default.
- W2809931848 hasConceptScore W2809931848C98045186 @default.
- W2809931848 hasLocation W28099318481 @default.
- W2809931848 hasOpenAccess W2809931848 @default.
- W2809931848 hasPrimaryLocation W28099318481 @default.
- W2809931848 hasRelatedWork W1957914738 @default.
- W2809931848 hasRelatedWork W2014928429 @default.
- W2809931848 hasRelatedWork W2079560958 @default.
- W2809931848 hasRelatedWork W2131773610 @default.
- W2809931848 hasRelatedWork W2378429704 @default.
- W2809931848 hasRelatedWork W2574706223 @default.
- W2809931848 hasRelatedWork W2783125920 @default.
- W2809931848 hasRelatedWork W2783291568 @default.
- W2809931848 hasRelatedWork W2801037430 @default.
- W2809931848 hasRelatedWork W2810470535 @default.
- W2809931848 hasRelatedWork W2972834515 @default.
- W2809931848 hasRelatedWork W3046210600 @default.
- W2809931848 hasRelatedWork W3110685770 @default.
- W2809931848 hasRelatedWork W3119302714 @default.
- W2809931848 hasRelatedWork W3133020644 @default.
- W2809931848 hasRelatedWork W3179887429 @default.
- W2809931848 hasRelatedWork W3195603152 @default.
- W2809931848 hasRelatedWork W1545710019 @default.
- W2809931848 hasRelatedWork W2980414587 @default.
- W2809931848 hasRelatedWork W3121706288 @default.
- W2809931848 isParatext "false" @default.
- W2809931848 isRetracted "false" @default.
- W2809931848 magId "2809931848" @default.
- W2809931848 workType "dissertation" @default.