Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810061985> ?p ?o ?g. }
- W2810061985 endingPage "084203" @default.
- W2810061985 startingPage "084203" @default.
- W2810061985 abstract "Using a machine learning (ML) method, we mine DB white dwarfs (DBWDs) from the Sloan Digital Sky Survey (SDSS) Data Release (DR) 12 and DR14. The ML method consists of two parts: feature extraction and classification. The least absolute shrinkage and selection operator (LASSO) is used for the spectral feature extraction by comparing high quality data of a positive sample group with negative sample groups. In both the training and testing sets, the positive sample group is composed of a selection of 300 known DBWDs, while the negative sample groups are obtained from all types of SDSS spectra. In the space of the LASSO detected features, a support vector machine is then employed to build classifiers that are used to separate the DBWDs from the non DBWDs for each individual type. Depending on the classifiers, the DBWD candidates are selected from the entire SDSS dataset. After visual inspection, 2808 spectra (2029 objects) are spectroscopically confirmed. By checking the samples with the literature, there are 58 objects with 60 spectra that are newly identified, including a newly discovered AM CVn. Finally, we measure their effective temperatures (Teff), surface gravities (log g), and radial velocities, before compiling them into a catalog." @default.
- W2810061985 created "2018-07-10" @default.
- W2810061985 creator A5006467926 @default.
- W2810061985 creator A5023597646 @default.
- W2810061985 creator A5040585002 @default.
- W2810061985 creator A5055445947 @default.
- W2810061985 creator A5064809380 @default.
- W2810061985 creator A5079060844 @default.
- W2810061985 date "2018-06-26" @default.
- W2810061985 modified "2023-09-29" @default.
- W2810061985 title "Spectral Feature Extraction for DB White Dwarfs Through Machine Learning Applied to New Discoveries in the Sdss DR12 and DR14" @default.
- W2810061985 cites W1551909886 @default.
- W2810061985 cites W1813809755 @default.
- W2810061985 cites W1842110001 @default.
- W2810061985 cites W1943306457 @default.
- W2810061985 cites W2001592554 @default.
- W2810061985 cites W2002287182 @default.
- W2810061985 cites W2029445285 @default.
- W2810061985 cites W2029664173 @default.
- W2810061985 cites W2039280786 @default.
- W2810061985 cites W2054472996 @default.
- W2810061985 cites W2060579668 @default.
- W2810061985 cites W2061767396 @default.
- W2810061985 cites W2066268781 @default.
- W2810061985 cites W2076419134 @default.
- W2810061985 cites W2082366856 @default.
- W2810061985 cites W2091610208 @default.
- W2810061985 cites W2097116533 @default.
- W2810061985 cites W2102600871 @default.
- W2810061985 cites W2106691122 @default.
- W2810061985 cites W2118661683 @default.
- W2810061985 cites W2121827652 @default.
- W2810061985 cites W2124199755 @default.
- W2810061985 cites W2124380423 @default.
- W2810061985 cites W2127060529 @default.
- W2810061985 cites W2129650868 @default.
- W2810061985 cites W2129653894 @default.
- W2810061985 cites W2132711591 @default.
- W2810061985 cites W2137703891 @default.
- W2810061985 cites W2144491297 @default.
- W2810061985 cites W2153635508 @default.
- W2810061985 cites W2156194791 @default.
- W2810061985 cites W2175046768 @default.
- W2810061985 cites W2583814104 @default.
- W2810061985 cites W3094096393 @default.
- W2810061985 cites W3098187109 @default.
- W2810061985 cites W3098522421 @default.
- W2810061985 cites W3098790947 @default.
- W2810061985 cites W3099133876 @default.
- W2810061985 cites W3099520098 @default.
- W2810061985 cites W3100108204 @default.
- W2810061985 cites W3100295275 @default.
- W2810061985 cites W3103310514 @default.
- W2810061985 cites W3125331078 @default.
- W2810061985 cites W48926618 @default.
- W2810061985 doi "https://doi.org/10.1088/1538-3873/aac7a8" @default.
- W2810061985 hasPublicationYear "2018" @default.
- W2810061985 type Work @default.
- W2810061985 sameAs 2810061985 @default.
- W2810061985 citedByCount "12" @default.
- W2810061985 countsByYear W28100619852018 @default.
- W2810061985 countsByYear W28100619852019 @default.
- W2810061985 countsByYear W28100619852020 @default.
- W2810061985 countsByYear W28100619852021 @default.
- W2810061985 countsByYear W28100619852022 @default.
- W2810061985 countsByYear W28100619852023 @default.
- W2810061985 crossrefType "journal-article" @default.
- W2810061985 hasAuthorship W2810061985A5006467926 @default.
- W2810061985 hasAuthorship W2810061985A5023597646 @default.
- W2810061985 hasAuthorship W2810061985A5040585002 @default.
- W2810061985 hasAuthorship W2810061985A5055445947 @default.
- W2810061985 hasAuthorship W2810061985A5064809380 @default.
- W2810061985 hasAuthorship W2810061985A5079060844 @default.
- W2810061985 hasBestOaLocation W28100619851 @default.
- W2810061985 hasConcept C121332964 @default.
- W2810061985 hasConcept C12267149 @default.
- W2810061985 hasConcept C136764020 @default.
- W2810061985 hasConcept C138885662 @default.
- W2810061985 hasConcept C148483581 @default.
- W2810061985 hasConcept C150846664 @default.
- W2810061985 hasConcept C153180895 @default.
- W2810061985 hasConcept C154945302 @default.
- W2810061985 hasConcept C180690934 @default.
- W2810061985 hasConcept C197445014 @default.
- W2810061985 hasConcept C198531522 @default.
- W2810061985 hasConcept C2776401178 @default.
- W2810061985 hasConcept C37616216 @default.
- W2810061985 hasConcept C41008148 @default.
- W2810061985 hasConcept C41895202 @default.
- W2810061985 hasConcept C44870925 @default.
- W2810061985 hasConcept C52622490 @default.
- W2810061985 hasConcept C73329638 @default.
- W2810061985 hasConcept C97355855 @default.
- W2810061985 hasConceptScore W2810061985C121332964 @default.
- W2810061985 hasConceptScore W2810061985C12267149 @default.
- W2810061985 hasConceptScore W2810061985C136764020 @default.
- W2810061985 hasConceptScore W2810061985C138885662 @default.
- W2810061985 hasConceptScore W2810061985C148483581 @default.