Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810099035> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2810099035 abstract "Owing to its good generalization performance and rapid learning speed, RNN (Randomized Neural Network) is widely used in text classification, image recognition, bioinformatics and other fields. However, the amount of data generated by applications in the real world is growing, and the traditional centralized randomized neural network (RNN) is no longer able to quickly and efficiently learn data that is so large. Therefore, this paper makes use of the distributed framework provided by Flink to realize the randomized neural network (RNN) parallelization algorithm to make up for the deficiency of traditional centralized randomized neural network (RNN) algorithm in dealing with large datasets. By analyzing the characteristics of the traditional centralized randomized neural network (RNN), we find that the most time consuming part is the matrix multiplication operation of the Moore generalized inverse matrix when calculating the output weight vector. Since the matrix multiplication can be decomposed, the distributed matrix can be multiplied by the distributed framework provided by Flink, and then the corresponding output weight vector is centrally calculated. Extensive experiments have validated the effectiveness of our proposed algorithm." @default.
- W2810099035 created "2018-07-10" @default.
- W2810099035 creator A5000720034 @default.
- W2810099035 creator A5076338600 @default.
- W2810099035 creator A5078793726 @default.
- W2810099035 date "2017-07-01" @default.
- W2810099035 modified "2023-09-25" @default.
- W2810099035 title "A parallel randomized neural network on in-memory cluster computing for big data" @default.
- W2810099035 cites W1971735090 @default.
- W2810099035 cites W1973747955 @default.
- W2810099035 cites W1980042374 @default.
- W2810099035 cites W1989904992 @default.
- W2810099035 cites W2044821377 @default.
- W2810099035 cites W2045489657 @default.
- W2810099035 cites W2061354549 @default.
- W2810099035 cites W2100495367 @default.
- W2810099035 cites W2112796928 @default.
- W2810099035 cites W2137983211 @default.
- W2810099035 cites W2141695047 @default.
- W2810099035 cites W2155910151 @default.
- W2810099035 cites W2159588611 @default.
- W2810099035 cites W2167982865 @default.
- W2810099035 cites W2286961399 @default.
- W2810099035 cites W2294551910 @default.
- W2810099035 cites W2608190038 @default.
- W2810099035 doi "https://doi.org/10.1109/fskd.2017.8393034" @default.
- W2810099035 hasPublicationYear "2017" @default.
- W2810099035 type Work @default.
- W2810099035 sameAs 2810099035 @default.
- W2810099035 citedByCount "1" @default.
- W2810099035 countsByYear W28100990352019 @default.
- W2810099035 crossrefType "proceedings-article" @default.
- W2810099035 hasAuthorship W2810099035A5000720034 @default.
- W2810099035 hasAuthorship W2810099035A5076338600 @default.
- W2810099035 hasAuthorship W2810099035A5078793726 @default.
- W2810099035 hasConcept C106487976 @default.
- W2810099035 hasConcept C114614502 @default.
- W2810099035 hasConcept C121332964 @default.
- W2810099035 hasConcept C134306372 @default.
- W2810099035 hasConcept C147168706 @default.
- W2810099035 hasConcept C154945302 @default.
- W2810099035 hasConcept C159985019 @default.
- W2810099035 hasConcept C17349429 @default.
- W2810099035 hasConcept C177148314 @default.
- W2810099035 hasConcept C192562407 @default.
- W2810099035 hasConcept C2780595030 @default.
- W2810099035 hasConcept C33923547 @default.
- W2810099035 hasConcept C41008148 @default.
- W2810099035 hasConcept C50644808 @default.
- W2810099035 hasConcept C62520636 @default.
- W2810099035 hasConcept C84114770 @default.
- W2810099035 hasConceptScore W2810099035C106487976 @default.
- W2810099035 hasConceptScore W2810099035C114614502 @default.
- W2810099035 hasConceptScore W2810099035C121332964 @default.
- W2810099035 hasConceptScore W2810099035C134306372 @default.
- W2810099035 hasConceptScore W2810099035C147168706 @default.
- W2810099035 hasConceptScore W2810099035C154945302 @default.
- W2810099035 hasConceptScore W2810099035C159985019 @default.
- W2810099035 hasConceptScore W2810099035C17349429 @default.
- W2810099035 hasConceptScore W2810099035C177148314 @default.
- W2810099035 hasConceptScore W2810099035C192562407 @default.
- W2810099035 hasConceptScore W2810099035C2780595030 @default.
- W2810099035 hasConceptScore W2810099035C33923547 @default.
- W2810099035 hasConceptScore W2810099035C41008148 @default.
- W2810099035 hasConceptScore W2810099035C50644808 @default.
- W2810099035 hasConceptScore W2810099035C62520636 @default.
- W2810099035 hasConceptScore W2810099035C84114770 @default.
- W2810099035 hasLocation W28100990351 @default.
- W2810099035 hasOpenAccess W2810099035 @default.
- W2810099035 hasPrimaryLocation W28100990351 @default.
- W2810099035 hasRelatedWork W141485057 @default.
- W2810099035 hasRelatedWork W1536863689 @default.
- W2810099035 hasRelatedWork W1584706890 @default.
- W2810099035 hasRelatedWork W1973429675 @default.
- W2810099035 hasRelatedWork W1987653356 @default.
- W2810099035 hasRelatedWork W2012088324 @default.
- W2810099035 hasRelatedWork W2053268667 @default.
- W2810099035 hasRelatedWork W2063806150 @default.
- W2810099035 hasRelatedWork W2174549517 @default.
- W2810099035 hasRelatedWork W2249599938 @default.
- W2810099035 hasRelatedWork W2279613615 @default.
- W2810099035 hasRelatedWork W2294965646 @default.
- W2810099035 hasRelatedWork W2360625283 @default.
- W2810099035 hasRelatedWork W2515555145 @default.
- W2810099035 hasRelatedWork W2767207094 @default.
- W2810099035 hasRelatedWork W2948059343 @default.
- W2810099035 hasRelatedWork W3141886046 @default.
- W2810099035 hasRelatedWork W3193175143 @default.
- W2810099035 hasRelatedWork W404990318 @default.
- W2810099035 hasRelatedWork W3091373317 @default.
- W2810099035 isParatext "false" @default.
- W2810099035 isRetracted "false" @default.
- W2810099035 magId "2810099035" @default.
- W2810099035 workType "article" @default.