Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810138651> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2810138651 endingPage "189" @default.
- W2810138651 startingPage "183" @default.
- W2810138651 abstract "Misdiagnosis of brain tumor types will prevent effective response to medical intervention and decrease the chance of survival among patients. One conventional method to differentiate brain tumors is by inspecting the MRI images of the patient’s brain. For large amount of data and different specific types of brain tumors, this method is time consuming and prone to human errors. In this study, we attempted to train a Convolutional Neural Network (CNN) to recognize the three most common types of brain tumors, i.e. the Glioma, Meningioma, and Pituitary. We implemented the simplest possible architecture of CNN; i.e. one each of convolution, max-pooling, and flattening layers, followed by a full connection from one hidden layer. The CNN was trained on a brain tumor dataset consisting of 3064 T-1 weighted CE-MRI images publicly available via figshare Cheng (Brain Tumor Dataset, 2017 [1]). Using our simple architecture and without any prior region-based segmentation, we could achieve a training accuracy of 98.51% and validation accuracy of 84.19% at best. These figures are comparable to the performance of more complicated region-based segmentation algorithms, which accuracies ranged between 71.39 and 94.68% on identical dataset Cheng (Brain Tumor Dataset, 2017 [1], Cheng et al. (PLoS One 11, 2017 [2])." @default.
- W2810138651 created "2018-07-10" @default.
- W2810138651 creator A5023695007 @default.
- W2810138651 creator A5050170447 @default.
- W2810138651 creator A5080902796 @default.
- W2810138651 creator A5081568111 @default.
- W2810138651 creator A5088598353 @default.
- W2810138651 date "2018-05-30" @default.
- W2810138651 modified "2023-10-18" @default.
- W2810138651 title "Brain Tumor Classification Using Convolutional Neural Network" @default.
- W2810138651 cites W2063552084 @default.
- W2810138651 cites W2116531017 @default.
- W2810138651 cites W2182098131 @default.
- W2810138651 cites W2194775991 @default.
- W2810138651 cites W2235523093 @default.
- W2810138651 cites W2289602271 @default.
- W2810138651 cites W2310992461 @default.
- W2810138651 cites W2416025122 @default.
- W2810138651 cites W2527222262 @default.
- W2810138651 cites W2551285838 @default.
- W2810138651 cites W2772670363 @default.
- W2810138651 doi "https://doi.org/10.1007/978-981-10-9035-6_33" @default.
- W2810138651 hasPublicationYear "2018" @default.
- W2810138651 type Work @default.
- W2810138651 sameAs 2810138651 @default.
- W2810138651 citedByCount "186" @default.
- W2810138651 countsByYear W28101386512018 @default.
- W2810138651 countsByYear W28101386512019 @default.
- W2810138651 countsByYear W28101386512020 @default.
- W2810138651 countsByYear W28101386512021 @default.
- W2810138651 countsByYear W28101386512022 @default.
- W2810138651 countsByYear W28101386512023 @default.
- W2810138651 crossrefType "book-chapter" @default.
- W2810138651 hasAuthorship W2810138651A5023695007 @default.
- W2810138651 hasAuthorship W2810138651A5050170447 @default.
- W2810138651 hasAuthorship W2810138651A5080902796 @default.
- W2810138651 hasAuthorship W2810138651A5081568111 @default.
- W2810138651 hasAuthorship W2810138651A5088598353 @default.
- W2810138651 hasConcept C142724271 @default.
- W2810138651 hasConcept C153180895 @default.
- W2810138651 hasConcept C154945302 @default.
- W2810138651 hasConcept C2779130545 @default.
- W2810138651 hasConcept C41008148 @default.
- W2810138651 hasConcept C71924100 @default.
- W2810138651 hasConcept C81363708 @default.
- W2810138651 hasConceptScore W2810138651C142724271 @default.
- W2810138651 hasConceptScore W2810138651C153180895 @default.
- W2810138651 hasConceptScore W2810138651C154945302 @default.
- W2810138651 hasConceptScore W2810138651C2779130545 @default.
- W2810138651 hasConceptScore W2810138651C41008148 @default.
- W2810138651 hasConceptScore W2810138651C71924100 @default.
- W2810138651 hasConceptScore W2810138651C81363708 @default.
- W2810138651 hasLocation W28101386511 @default.
- W2810138651 hasOpenAccess W2810138651 @default.
- W2810138651 hasPrimaryLocation W28101386511 @default.
- W2810138651 hasRelatedWork W2175746458 @default.
- W2810138651 hasRelatedWork W2613736958 @default.
- W2810138651 hasRelatedWork W2732542196 @default.
- W2810138651 hasRelatedWork W2738221750 @default.
- W2810138651 hasRelatedWork W2760085659 @default.
- W2810138651 hasRelatedWork W2912288872 @default.
- W2810138651 hasRelatedWork W3012978760 @default.
- W2810138651 hasRelatedWork W3081496756 @default.
- W2810138651 hasRelatedWork W3093612317 @default.
- W2810138651 hasRelatedWork W4304820710 @default.
- W2810138651 isParatext "false" @default.
- W2810138651 isRetracted "false" @default.
- W2810138651 magId "2810138651" @default.
- W2810138651 workType "book-chapter" @default.