Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810177850> ?p ?o ?g. }
- W2810177850 endingPage "1127" @default.
- W2810177850 startingPage "1118" @default.
- W2810177850 abstract "Major depressive disorder (MDD) is a highly heterogeneous condition in terms of symptom presentation and, likely, underlying pathophysiology. Accordingly, it is possible that only certain individuals with MDD are well-suited to antidepressants. A potentially fruitful approach to parsing this heterogeneity is to focus on promising endophenotypes of depression, such as neuroticism, anhedonia, and cognitive control deficits.Within an 8-week multisite trial of sertraline v. placebo for depressed adults (n = 216), we examined whether the combination of machine learning with a Personalized Advantage Index (PAI) can generate individualized treatment recommendations on the basis of endophenotype profiles coupled with clinical and demographic characteristics.Five pre-treatment variables moderated treatment response. Higher depression severity and neuroticism, older age, less impairment in cognitive control, and being employed were each associated with better outcomes to sertraline than placebo. Across 1000 iterations of a 10-fold cross-validation, the PAI model predicted that 31% of the sample would exhibit a clinically meaningful advantage [post-treatment Hamilton Rating Scale for Depression (HRSD) difference ⩾3] with sertraline relative to placebo. Although there were no overall outcome differences between treatment groups (d = 0.15), those identified as optimally suited to sertraline at pre-treatment had better week 8 HRSD scores if randomized to sertraline (10.7) than placebo (14.7) (d = 0.58).A subset of MDD patients optimally suited to sertraline can be identified on the basis of pre-treatment characteristics. This model must be tested prospectively before it can be used to inform treatment selection. However, findings demonstrate the potential to improve individual outcomes through algorithm-guided treatment recommendations." @default.
- W2810177850 created "2018-07-10" @default.
- W2810177850 creator A5008134404 @default.
- W2810177850 creator A5008937416 @default.
- W2810177850 creator A5012368566 @default.
- W2810177850 creator A5013242137 @default.
- W2810177850 creator A5023581810 @default.
- W2810177850 creator A5030993542 @default.
- W2810177850 creator A5032519886 @default.
- W2810177850 creator A5035079973 @default.
- W2810177850 creator A5039823564 @default.
- W2810177850 creator A5045458791 @default.
- W2810177850 creator A5047008189 @default.
- W2810177850 creator A5050185302 @default.
- W2810177850 creator A5052280484 @default.
- W2810177850 creator A5059970829 @default.
- W2810177850 creator A5065428235 @default.
- W2810177850 creator A5067156584 @default.
- W2810177850 creator A5069346030 @default.
- W2810177850 creator A5075045747 @default.
- W2810177850 creator A5077815451 @default.
- W2810177850 creator A5081426855 @default.
- W2810177850 creator A5084024326 @default.
- W2810177850 creator A5088376776 @default.
- W2810177850 date "2018-07-02" @default.
- W2810177850 modified "2023-10-14" @default.
- W2810177850 title "Personalized prediction of antidepressant v. placebo response: evidence from the EMBARC study" @default.
- W2810177850 cites W1493047350 @default.
- W2810177850 cites W1505100413 @default.
- W2810177850 cites W1510463128 @default.
- W2810177850 cites W154068164 @default.
- W2810177850 cites W1595717333 @default.
- W2810177850 cites W1923793693 @default.
- W2810177850 cites W1967366594 @default.
- W2810177850 cites W1969010498 @default.
- W2810177850 cites W1970133878 @default.
- W2810177850 cites W1977576437 @default.
- W2810177850 cites W1978954330 @default.
- W2810177850 cites W1989537794 @default.
- W2810177850 cites W1995716647 @default.
- W2810177850 cites W1999862868 @default.
- W2810177850 cites W2003952669 @default.
- W2810177850 cites W2004722718 @default.
- W2810177850 cites W2004762037 @default.
- W2810177850 cites W2025500778 @default.
- W2810177850 cites W2027251075 @default.
- W2810177850 cites W2034528843 @default.
- W2810177850 cites W2037401035 @default.
- W2810177850 cites W2047062592 @default.
- W2810177850 cites W2050486061 @default.
- W2810177850 cites W2054077215 @default.
- W2810177850 cites W2056611057 @default.
- W2810177850 cites W2058317558 @default.
- W2810177850 cites W2059819102 @default.
- W2810177850 cites W2064186732 @default.
- W2810177850 cites W2065796254 @default.
- W2810177850 cites W2068055929 @default.
- W2810177850 cites W2071735605 @default.
- W2810177850 cites W2079702662 @default.
- W2810177850 cites W2080820439 @default.
- W2810177850 cites W2085575985 @default.
- W2810177850 cites W2094608167 @default.
- W2810177850 cites W2097360283 @default.
- W2810177850 cites W2101652281 @default.
- W2810177850 cites W2111267928 @default.
- W2810177850 cites W2114613490 @default.
- W2810177850 cites W2116153150 @default.
- W2810177850 cites W2118483987 @default.
- W2810177850 cites W2131356926 @default.
- W2810177850 cites W2132324173 @default.
- W2810177850 cites W2135307029 @default.
- W2810177850 cites W2136228108 @default.
- W2810177850 cites W2141019052 @default.
- W2810177850 cites W2146659162 @default.
- W2810177850 cites W2146738944 @default.
- W2810177850 cites W2147801619 @default.
- W2810177850 cites W2149402043 @default.
- W2810177850 cites W2149697128 @default.
- W2810177850 cites W2153403353 @default.
- W2810177850 cites W2160090182 @default.
- W2810177850 cites W2162056840 @default.
- W2810177850 cites W2163678685 @default.
- W2810177850 cites W2164104699 @default.
- W2810177850 cites W2164644787 @default.
- W2810177850 cites W2164909275 @default.
- W2810177850 cites W2166661898 @default.
- W2810177850 cites W2168173027 @default.
- W2810177850 cites W2168359609 @default.
- W2810177850 cites W2169442707 @default.
- W2810177850 cites W2204134580 @default.
- W2810177850 cites W2293904413 @default.
- W2810177850 cites W2298299786 @default.
- W2810177850 cites W2406457845 @default.
- W2810177850 cites W2586384568 @default.
- W2810177850 cites W2586549282 @default.
- W2810177850 cites W2588483919 @default.
- W2810177850 cites W2738873788 @default.
- W2810177850 cites W2788337440 @default.