Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810181630> ?p ?o ?g. }
- W2810181630 abstract "Text mining (TM) methods have been used extensively to extract relations and events from the literature. In addition, TM techniques have been used to extract various types or dimensions of interpretative information, known as Meta-Knowledge (MK), from the context of relations and events, e.g. negation, speculation, certainty and knowledge type. However, most existing methods have focussed on the extraction of individual dimensions of MK, without investigating how they can be combined to obtain even richer contextual information. In this paper, we describe a novel, supervised method to extract new MK dimensions that encode Research Hypotheses (an author’s intended knowledge gain) and New Knowledge (an author’s findings). The method incorporates various features, including a combination of simple MK dimensions. We identify previously explored dimensions and then use a random forest to combine these with linguistic features into a classification model. To facilitate evaluation of the model, we have enriched two existing corpora annotated with relations and events, i.e., a subset of the GENIA-MK corpus and the EU-ADR corpus, by adding attributes to encode whether each relation or event corresponds to Research Hypothesis or New Knowledge. In the GENIA-MK corpus, these new attributes complement simpler MK dimensions that had previously been annotated. We show that our approach is able to assign different types of MK dimensions to relations and events with a high degree of accuracy. Firstly, our method is able to improve upon the previously reported state of the art performance for an existing dimension, i.e., Knowledge Type. Secondly, we also demonstrate high F1-score in predicting the new dimensions of Research Hypothesis (GENIA: 0.914, EU-ADR 0.802) and New Knowledge (GENIA: 0.829, EU-ADR 0.836). We have presented a novel approach for predicting New Knowledge and Research Hypothesis, which combines simple MK dimensions to achieve high F1-scores. The extraction of such information is valuable for a number of practical TM applications." @default.
- W2810181630 created "2018-07-10" @default.
- W2810181630 creator A5010467635 @default.
- W2810181630 creator A5035746903 @default.
- W2810181630 creator A5050960711 @default.
- W2810181630 creator A5065634208 @default.
- W2810181630 creator A5077976343 @default.
- W2810181630 creator A5087735486 @default.
- W2810181630 date "2018-06-25" @default.
- W2810181630 modified "2023-10-17" @default.
- W2810181630 title "Identification of research hypotheses and new knowledge from scientific literature" @default.
- W2810181630 cites W1850865022 @default.
- W2810181630 cites W192665053 @default.
- W2810181630 cites W1965893653 @default.
- W2810181630 cites W1966976587 @default.
- W2810181630 cites W1975505139 @default.
- W2810181630 cites W1982464493 @default.
- W2810181630 cites W1998212996 @default.
- W2810181630 cites W2002953354 @default.
- W2810181630 cites W2003601914 @default.
- W2810181630 cites W2004761926 @default.
- W2810181630 cites W2028473264 @default.
- W2810181630 cites W2034937344 @default.
- W2810181630 cites W2036935277 @default.
- W2810181630 cites W2051547811 @default.
- W2810181630 cites W2052217781 @default.
- W2810181630 cites W2053154970 @default.
- W2810181630 cites W2057197272 @default.
- W2810181630 cites W2078017455 @default.
- W2810181630 cites W2085809930 @default.
- W2810181630 cites W2096537696 @default.
- W2810181630 cites W2108706252 @default.
- W2810181630 cites W2108791029 @default.
- W2810181630 cites W2114348990 @default.
- W2810181630 cites W2122763686 @default.
- W2810181630 cites W2132011734 @default.
- W2810181630 cites W2133990480 @default.
- W2810181630 cites W2136437513 @default.
- W2810181630 cites W2149803936 @default.
- W2810181630 cites W2282284299 @default.
- W2810181630 cites W2489933339 @default.
- W2810181630 cites W2507306138 @default.
- W2810181630 cites W2737480027 @default.
- W2810181630 cites W2911964244 @default.
- W2810181630 cites W4294214983 @default.
- W2810181630 doi "https://doi.org/10.1186/s12911-018-0639-1" @default.
- W2810181630 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6019216" @default.
- W2810181630 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29940927" @default.
- W2810181630 hasPublicationYear "2018" @default.
- W2810181630 type Work @default.
- W2810181630 sameAs 2810181630 @default.
- W2810181630 citedByCount "51" @default.
- W2810181630 countsByYear W28101816302018 @default.
- W2810181630 countsByYear W28101816302019 @default.
- W2810181630 countsByYear W28101816302020 @default.
- W2810181630 countsByYear W28101816302021 @default.
- W2810181630 countsByYear W28101816302022 @default.
- W2810181630 countsByYear W28101816302023 @default.
- W2810181630 crossrefType "journal-article" @default.
- W2810181630 hasAuthorship W2810181630A5010467635 @default.
- W2810181630 hasAuthorship W2810181630A5035746903 @default.
- W2810181630 hasAuthorship W2810181630A5050960711 @default.
- W2810181630 hasAuthorship W2810181630A5065634208 @default.
- W2810181630 hasAuthorship W2810181630A5077976343 @default.
- W2810181630 hasAuthorship W2810181630A5087735486 @default.
- W2810181630 hasBestOaLocation W28101816301 @default.
- W2810181630 hasConcept C104317684 @default.
- W2810181630 hasConcept C112313634 @default.
- W2810181630 hasConcept C116834253 @default.
- W2810181630 hasConcept C124101348 @default.
- W2810181630 hasConcept C127716648 @default.
- W2810181630 hasConcept C151730666 @default.
- W2810181630 hasConcept C154945302 @default.
- W2810181630 hasConcept C185592680 @default.
- W2810181630 hasConcept C188082640 @default.
- W2810181630 hasConcept C195807954 @default.
- W2810181630 hasConcept C199360897 @default.
- W2810181630 hasConcept C202444582 @default.
- W2810181630 hasConcept C204321447 @default.
- W2810181630 hasConcept C2185349 @default.
- W2810181630 hasConcept C23123220 @default.
- W2810181630 hasConcept C2524010 @default.
- W2810181630 hasConcept C25343380 @default.
- W2810181630 hasConcept C2779343474 @default.
- W2810181630 hasConcept C33676613 @default.
- W2810181630 hasConcept C33923547 @default.
- W2810181630 hasConcept C41008148 @default.
- W2810181630 hasConcept C55493867 @default.
- W2810181630 hasConcept C59822182 @default.
- W2810181630 hasConcept C66746571 @default.
- W2810181630 hasConcept C7493553 @default.
- W2810181630 hasConcept C86803240 @default.
- W2810181630 hasConceptScore W2810181630C104317684 @default.
- W2810181630 hasConceptScore W2810181630C112313634 @default.
- W2810181630 hasConceptScore W2810181630C116834253 @default.
- W2810181630 hasConceptScore W2810181630C124101348 @default.
- W2810181630 hasConceptScore W2810181630C127716648 @default.
- W2810181630 hasConceptScore W2810181630C151730666 @default.
- W2810181630 hasConceptScore W2810181630C154945302 @default.
- W2810181630 hasConceptScore W2810181630C185592680 @default.