Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810229013> ?p ?o ?g. }
- W2810229013 abstract "Abstract We apply the filtered and graded methods developed in earlier works to find (noncommutative) free group algebras in division rings. If $L$ is a Lie algebra, we denote by $U(L)$ its universal enveloping algebra. P. M. Cohn constructed a division ring $mathfrak{D}_{L}$ that contains $U(L)$ . We denote by $mathfrak{D}(L)$ the division subring of $mathfrak{D}_{L}$ generated by $U(L)$ . Let $k$ be a field of characteristic zero, and let $L$ be a nonabelian Lie $k$ -algebra. If either $L$ is residually nilpotent or $U(L)$ is an Ore domain, we show that $mathfrak{D}(L)$ contains (noncommutative) free group algebras. In those same cases, if $L$ is equipped with an involution, we are able to prove that the free group algebra in $mathfrak{D}(L)$ can be chosen generated by symmetric elements in most cases. Let $G$ be a nonabelian residually torsion-free nilpotent group, and let $k(G)$ be the division subring of the Malcev–Neumann series ring generated by the group algebra $k[G]$ . If $G$ is equipped with an involution, we show that $k(G)$ contains a (noncommutative) free group algebra generated by symmetric elements." @default.
- W2810229013 created "2018-07-10" @default.
- W2810229013 creator A5011422867 @default.
- W2810229013 date "2019-07-05" @default.
- W2810229013 modified "2023-10-16" @default.
- W2810229013 title "Free Group Algebras in Division Rings with Valuation II" @default.
- W2810229013 cites W138107028 @default.
- W2810229013 cites W1487047785 @default.
- W2810229013 cites W1521525514 @default.
- W2810229013 cites W1529220174 @default.
- W2810229013 cites W1562981069 @default.
- W2810229013 cites W1573036064 @default.
- W2810229013 cites W1864395322 @default.
- W2810229013 cites W1969046746 @default.
- W2810229013 cites W1970957632 @default.
- W2810229013 cites W1977221223 @default.
- W2810229013 cites W1990757675 @default.
- W2810229013 cites W1991284818 @default.
- W2810229013 cites W2004159565 @default.
- W2810229013 cites W2008750215 @default.
- W2810229013 cites W2010940246 @default.
- W2810229013 cites W2015767405 @default.
- W2810229013 cites W2020480712 @default.
- W2810229013 cites W2042191269 @default.
- W2810229013 cites W2048104095 @default.
- W2810229013 cites W2052072883 @default.
- W2810229013 cites W2056072552 @default.
- W2810229013 cites W2088064347 @default.
- W2810229013 cites W2171203959 @default.
- W2810229013 cites W2316264530 @default.
- W2810229013 cites W2583994947 @default.
- W2810229013 cites W2763284769 @default.
- W2810229013 cites W2963119531 @default.
- W2810229013 cites W2963121104 @default.
- W2810229013 cites W2963435439 @default.
- W2810229013 cites W2963604689 @default.
- W2810229013 cites W2963790036 @default.
- W2810229013 cites W2964027396 @default.
- W2810229013 cites W436297348 @default.
- W2810229013 cites W562061978 @default.
- W2810229013 cites W57013368 @default.
- W2810229013 cites W2962956078 @default.
- W2810229013 doi "https://doi.org/10.4153/s0008414x19000348" @default.
- W2810229013 hasPublicationYear "2019" @default.
- W2810229013 type Work @default.
- W2810229013 sameAs 2810229013 @default.
- W2810229013 citedByCount "1" @default.
- W2810229013 countsByYear W28102290132022 @default.
- W2810229013 crossrefType "journal-article" @default.
- W2810229013 hasAuthorship W2810229013A5011422867 @default.
- W2810229013 hasBestOaLocation W28102290132 @default.
- W2810229013 hasConcept C10138342 @default.
- W2810229013 hasConcept C114614502 @default.
- W2810229013 hasConcept C136119220 @default.
- W2810229013 hasConcept C138354692 @default.
- W2810229013 hasConcept C14394260 @default.
- W2810229013 hasConcept C144133560 @default.
- W2810229013 hasConcept C161491579 @default.
- W2810229013 hasConcept C167239746 @default.
- W2810229013 hasConcept C178790620 @default.
- W2810229013 hasConcept C183778304 @default.
- W2810229013 hasConcept C185592680 @default.
- W2810229013 hasConcept C186027771 @default.
- W2810229013 hasConcept C202444582 @default.
- W2810229013 hasConcept C2781311116 @default.
- W2810229013 hasConcept C31671303 @default.
- W2810229013 hasConcept C33923547 @default.
- W2810229013 hasConcept C60798267 @default.
- W2810229013 hasConcept C76572486 @default.
- W2810229013 hasConcept C77021192 @default.
- W2810229013 hasConcept C78313660 @default.
- W2810229013 hasConcept C94375191 @default.
- W2810229013 hasConceptScore W2810229013C10138342 @default.
- W2810229013 hasConceptScore W2810229013C114614502 @default.
- W2810229013 hasConceptScore W2810229013C136119220 @default.
- W2810229013 hasConceptScore W2810229013C138354692 @default.
- W2810229013 hasConceptScore W2810229013C14394260 @default.
- W2810229013 hasConceptScore W2810229013C144133560 @default.
- W2810229013 hasConceptScore W2810229013C161491579 @default.
- W2810229013 hasConceptScore W2810229013C167239746 @default.
- W2810229013 hasConceptScore W2810229013C178790620 @default.
- W2810229013 hasConceptScore W2810229013C183778304 @default.
- W2810229013 hasConceptScore W2810229013C185592680 @default.
- W2810229013 hasConceptScore W2810229013C186027771 @default.
- W2810229013 hasConceptScore W2810229013C202444582 @default.
- W2810229013 hasConceptScore W2810229013C2781311116 @default.
- W2810229013 hasConceptScore W2810229013C31671303 @default.
- W2810229013 hasConceptScore W2810229013C33923547 @default.
- W2810229013 hasConceptScore W2810229013C60798267 @default.
- W2810229013 hasConceptScore W2810229013C76572486 @default.
- W2810229013 hasConceptScore W2810229013C77021192 @default.
- W2810229013 hasConceptScore W2810229013C78313660 @default.
- W2810229013 hasConceptScore W2810229013C94375191 @default.
- W2810229013 hasLocation W28102290131 @default.
- W2810229013 hasLocation W28102290132 @default.
- W2810229013 hasOpenAccess W2810229013 @default.
- W2810229013 hasPrimaryLocation W28102290131 @default.
- W2810229013 hasRelatedWork W2008079705 @default.
- W2810229013 hasRelatedWork W2040098691 @default.
- W2810229013 hasRelatedWork W2053669132 @default.