Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810233336> ?p ?o ?g. }
- W2810233336 endingPage "39" @default.
- W2810233336 startingPage "39" @default.
- W2810233336 abstract "Improper land application of excess poultry waste (PW) causes environmental issues and other problems. Meanwhile there is an increasing trend of using PW as an alternative energy resource. The Higher Heating Value (HHV) is critical for designing and analyzing the PW conversion process. Several proximate-based mathematical models have been proposed to estimate the HHV of biomass, coal, and other solid fuels. Nevertheless, only a small number of studies have focused on a subclass of fuels, especially for PW. The aim of this study is to develop proximate-based regression models for an HHV prediction of PW. Sample data of PW were collected from open literature to develop regression models. The resulting models were then validated by additional PW samples and other published models. Results indicate that the most accurate model contains linear (all proximate components), polynomial terms (quadratic and cubic of volatile matter), and interaction effect (fixed carbon and ash). Moreover, results show that best-fit regression model has a higher R2 (91.62%) and lower estimation errors than the existing proximate-based models. Therefore, this new regression model can be an excellent tool for predicting the HHV of PW and does not require any expensive equipment that measures HHV or elemental compositions." @default.
- W2810233336 created "2018-07-10" @default.
- W2810233336 creator A5019105933 @default.
- W2810233336 creator A5038592173 @default.
- W2810233336 creator A5048097265 @default.
- W2810233336 creator A5070473238 @default.
- W2810233336 date "2018-06-26" @default.
- W2810233336 modified "2023-10-06" @default.
- W2810233336 title "Regression Model to Predict the Higher Heating Value of Poultry Waste from Proximate Analysis" @default.
- W2810233336 cites W1587491960 @default.
- W2810233336 cites W1974368023 @default.
- W2810233336 cites W1974988691 @default.
- W2810233336 cites W1980044063 @default.
- W2810233336 cites W1980289232 @default.
- W2810233336 cites W1988222133 @default.
- W2810233336 cites W1998907166 @default.
- W2810233336 cites W2000761731 @default.
- W2810233336 cites W2006509930 @default.
- W2810233336 cites W2019154940 @default.
- W2810233336 cites W2022104130 @default.
- W2810233336 cites W2024403907 @default.
- W2810233336 cites W2028406228 @default.
- W2810233336 cites W2029918009 @default.
- W2810233336 cites W2030061736 @default.
- W2810233336 cites W2033363853 @default.
- W2810233336 cites W2036088151 @default.
- W2810233336 cites W2036849640 @default.
- W2810233336 cites W2041749798 @default.
- W2810233336 cites W2041796527 @default.
- W2810233336 cites W2047007942 @default.
- W2810233336 cites W2057982425 @default.
- W2810233336 cites W2060170427 @default.
- W2810233336 cites W2065918202 @default.
- W2810233336 cites W2080743482 @default.
- W2810233336 cites W2082081854 @default.
- W2810233336 cites W2087404240 @default.
- W2810233336 cites W2087681702 @default.
- W2810233336 cites W2089435415 @default.
- W2810233336 cites W2090758660 @default.
- W2810233336 cites W2091924075 @default.
- W2810233336 cites W2092447451 @default.
- W2810233336 cites W2115075302 @default.
- W2810233336 cites W2118750261 @default.
- W2810233336 cites W2119360124 @default.
- W2810233336 cites W2121356437 @default.
- W2810233336 cites W2208337233 @default.
- W2810233336 cites W2324791265 @default.
- W2810233336 cites W2491969767 @default.
- W2810233336 cites W2518113245 @default.
- W2810233336 cites W2581540037 @default.
- W2810233336 cites W2591619148 @default.
- W2810233336 cites W2603658045 @default.
- W2810233336 cites W2604887609 @default.
- W2810233336 cites W4247110422 @default.
- W2810233336 doi "https://doi.org/10.3390/resources7030039" @default.
- W2810233336 hasPublicationYear "2018" @default.
- W2810233336 type Work @default.
- W2810233336 sameAs 2810233336 @default.
- W2810233336 citedByCount "68" @default.
- W2810233336 countsByYear W28102333362019 @default.
- W2810233336 countsByYear W28102333362020 @default.
- W2810233336 countsByYear W28102333362021 @default.
- W2810233336 countsByYear W28102333362022 @default.
- W2810233336 countsByYear W28102333362023 @default.
- W2810233336 crossrefType "journal-article" @default.
- W2810233336 hasAuthorship W2810233336A5019105933 @default.
- W2810233336 hasAuthorship W2810233336A5038592173 @default.
- W2810233336 hasAuthorship W2810233336A5048097265 @default.
- W2810233336 hasAuthorship W2810233336A5070473238 @default.
- W2810233336 hasBestOaLocation W28102333361 @default.
- W2810233336 hasConcept C105795698 @default.
- W2810233336 hasConcept C105923489 @default.
- W2810233336 hasConcept C115540264 @default.
- W2810233336 hasConcept C120068334 @default.
- W2810233336 hasConcept C149782125 @default.
- W2810233336 hasConcept C152877465 @default.
- W2810233336 hasConcept C156383657 @default.
- W2810233336 hasConcept C178790620 @default.
- W2810233336 hasConcept C185592680 @default.
- W2810233336 hasConcept C18903297 @default.
- W2810233336 hasConcept C196832758 @default.
- W2810233336 hasConcept C198531522 @default.
- W2810233336 hasConcept C2780539549 @default.
- W2810233336 hasConcept C31903555 @default.
- W2810233336 hasConcept C33923547 @default.
- W2810233336 hasConcept C39432304 @default.
- W2810233336 hasConcept C43617362 @default.
- W2810233336 hasConcept C48921125 @default.
- W2810233336 hasConcept C83546350 @default.
- W2810233336 hasConcept C86803240 @default.
- W2810233336 hasConceptScore W2810233336C105795698 @default.
- W2810233336 hasConceptScore W2810233336C105923489 @default.
- W2810233336 hasConceptScore W2810233336C115540264 @default.
- W2810233336 hasConceptScore W2810233336C120068334 @default.
- W2810233336 hasConceptScore W2810233336C149782125 @default.
- W2810233336 hasConceptScore W2810233336C152877465 @default.
- W2810233336 hasConceptScore W2810233336C156383657 @default.
- W2810233336 hasConceptScore W2810233336C178790620 @default.