Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810289317> ?p ?o ?g. }
- W2810289317 endingPage "303" @default.
- W2810289317 startingPage "289" @default.
- W2810289317 abstract "Handwriting biometrics is the science of identifying the behavioral aspect of an individual’s writing style and exploiting it to develop automated writer identification and verification systems. This paper presents an efficient handwriting identification system which combines scale-invariant feature transform (SIFT) and RootSIFT descriptors in a set of Gaussian mixture models (GMMs). In particular, a new concept of similarity and dissimilarity Gaussian mixture models (SGMM and DGMM) is introduced. While an SGMM is constructed for every writer to describe the intra-class similarity that is exhibited between the handwritten texts of the same writer, a DGMM represents the contrast or dissimilarity that exists between the writer’s style on one hand and other different handwriting styles on the other hand. Furthermore, because the handwritten text is described by a number of key point descriptors where each descriptor generates an SGMM/DGMM score, a new weighted histogram method is proposed to derive the intermediate prediction score for each writer’s GMM. The idea of weighted histogram exploits the fact that handwritings from the same writer should exhibit more similar textual patterns than dissimilar ones, hence, by penalizing the bad scores with a cost function, the identification rate can be significantly enhanced. Our proposed system has been extensively assessed using six different public datasets (including three English, two Arabic, and one hybrid language), and the results have shown the superiority of the proposed system over the state-of-the-art techniques." @default.
- W2810289317 created "2018-07-10" @default.
- W2810289317 creator A5013797350 @default.
- W2810289317 creator A5033623398 @default.
- W2810289317 creator A5041241660 @default.
- W2810289317 creator A5042181468 @default.
- W2810289317 date "2019-02-01" @default.
- W2810289317 modified "2023-10-06" @default.
- W2810289317 title "Dissimilarity Gaussian Mixture Models for Efficient Offline Handwritten Text-Independent Identification Using SIFT and RootSIFT Descriptors" @default.
- W2810289317 cites W1505909827 @default.
- W2810289317 cites W1588879005 @default.
- W2810289317 cites W1965742792 @default.
- W2810289317 cites W1966917421 @default.
- W2810289317 cites W1979931042 @default.
- W2810289317 cites W1980995229 @default.
- W2810289317 cites W1984294391 @default.
- W2810289317 cites W1997399314 @default.
- W2810289317 cites W1997460147 @default.
- W2810289317 cites W1997828165 @default.
- W2810289317 cites W2000423522 @default.
- W2810289317 cites W2002732940 @default.
- W2810289317 cites W2015140178 @default.
- W2810289317 cites W2016249943 @default.
- W2810289317 cites W2023933845 @default.
- W2810289317 cites W2024185896 @default.
- W2810289317 cites W2034125743 @default.
- W2810289317 cites W2039903200 @default.
- W2810289317 cites W2041823554 @default.
- W2810289317 cites W2048581529 @default.
- W2810289317 cites W2050088446 @default.
- W2810289317 cites W2050995497 @default.
- W2810289317 cites W2069883713 @default.
- W2810289317 cites W2074812954 @default.
- W2810289317 cites W2079077535 @default.
- W2810289317 cites W2090985198 @default.
- W2810289317 cites W2095980635 @default.
- W2810289317 cites W2105557977 @default.
- W2810289317 cites W2105571589 @default.
- W2810289317 cites W2112136311 @default.
- W2810289317 cites W2115629999 @default.
- W2810289317 cites W2119818729 @default.
- W2810289317 cites W2120888827 @default.
- W2810289317 cites W2120987116 @default.
- W2810289317 cites W2126133542 @default.
- W2810289317 cites W2128017662 @default.
- W2810289317 cites W2130478883 @default.
- W2810289317 cites W2133188067 @default.
- W2810289317 cites W2140959843 @default.
- W2810289317 cites W2146093494 @default.
- W2810289317 cites W2151009984 @default.
- W2810289317 cites W2151103935 @default.
- W2810289317 cites W2152446828 @default.
- W2810289317 cites W2152928267 @default.
- W2810289317 cites W2170737087 @default.
- W2810289317 cites W2190740400 @default.
- W2810289317 cites W2206728794 @default.
- W2810289317 cites W2529897829 @default.
- W2810289317 cites W2543547643 @default.
- W2810289317 cites W2550742354 @default.
- W2810289317 cites W2565070694 @default.
- W2810289317 cites W2620788629 @default.
- W2810289317 cites W4248085587 @default.
- W2810289317 cites W601793257 @default.
- W2810289317 doi "https://doi.org/10.1109/tifs.2018.2850011" @default.
- W2810289317 hasPublicationYear "2019" @default.
- W2810289317 type Work @default.
- W2810289317 sameAs 2810289317 @default.
- W2810289317 citedByCount "41" @default.
- W2810289317 countsByYear W28102893172019 @default.
- W2810289317 countsByYear W28102893172020 @default.
- W2810289317 countsByYear W28102893172021 @default.
- W2810289317 countsByYear W28102893172022 @default.
- W2810289317 countsByYear W28102893172023 @default.
- W2810289317 crossrefType "journal-article" @default.
- W2810289317 hasAuthorship W2810289317A5013797350 @default.
- W2810289317 hasAuthorship W2810289317A5033623398 @default.
- W2810289317 hasAuthorship W2810289317A5041241660 @default.
- W2810289317 hasAuthorship W2810289317A5042181468 @default.
- W2810289317 hasBestOaLocation W28102893172 @default.
- W2810289317 hasConcept C103278499 @default.
- W2810289317 hasConcept C115961682 @default.
- W2810289317 hasConcept C116834253 @default.
- W2810289317 hasConcept C121332964 @default.
- W2810289317 hasConcept C13622073 @default.
- W2810289317 hasConcept C138885662 @default.
- W2810289317 hasConcept C153180895 @default.
- W2810289317 hasConcept C154945302 @default.
- W2810289317 hasConcept C163716315 @default.
- W2810289317 hasConcept C177264268 @default.
- W2810289317 hasConcept C199360897 @default.
- W2810289317 hasConcept C204321447 @default.
- W2810289317 hasConcept C2779386606 @default.
- W2810289317 hasConcept C41008148 @default.
- W2810289317 hasConcept C41895202 @default.
- W2810289317 hasConcept C52622490 @default.
- W2810289317 hasConcept C53533937 @default.
- W2810289317 hasConcept C59822182 @default.
- W2810289317 hasConcept C61224824 @default.