Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810307430> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2810307430 endingPage "31" @default.
- W2810307430 startingPage "23" @default.
- W2810307430 abstract "Huge growth is observed in the speech and speaker recognition field due to many artificial intelligence algorithms being applied. Speech is used to convey messages via the language being spoken, emotions, gender and speaker identity. Many real applications in healthcare are based upon speech and speaker recognition, e.g. a voice-controlled wheelchair helps control the chair. In this paper, we use a genetic algorithm (GA) for combined speaker and speech recognition, relying on optimized Mel Frequency Cepstral Coefficient (MFCC) speech features, and classification is performed using a Deep Neural Network (DNN). In the first phase, feature extraction using MFCC is executed. Then, feature optimization is performed using GA. In the second phase training is conducted using DNN. Evaluation and validation of the proposed work model is done by setting a real environment, and efficiency is calculated on the basis of such parameters as accuracy, precision rate, recall rate, sensitivity, and specificity. Also, this paper presents an evaluation of such feature extraction methods as linear predictive coding coefficient (LPCC), perceptual linear prediction (PLP), mel frequency cepstral coefficients (MFCC) and relative spectra filtering (RASTA), with all of them used for combined speaker and speech recognition systems. A comparison of different methods based on existing techniques for both clean and noisy environments is made as well." @default.
- W2810307430 created "2018-07-10" @default.
- W2810307430 creator A5004732934 @default.
- W2810307430 creator A5016703888 @default.
- W2810307430 creator A5084537521 @default.
- W2810307430 date "2018-06-29" @default.
- W2810307430 modified "2023-10-04" @default.
- W2810307430 title "Genetic Algorithm for Combined Speaker and Speech Recognition using Deep Neural Networks" @default.
- W2810307430 cites W1522199561 @default.
- W2810307430 cites W1974966818 @default.
- W2810307430 cites W1990351874 @default.
- W2810307430 cites W2014809296 @default.
- W2810307430 cites W2041823554 @default.
- W2810307430 cites W2052382192 @default.
- W2810307430 cites W2062164080 @default.
- W2810307430 cites W2084702304 @default.
- W2810307430 cites W2099189034 @default.
- W2810307430 cites W2100693337 @default.
- W2810307430 cites W2104550194 @default.
- W2810307430 cites W2105626690 @default.
- W2810307430 cites W2112967571 @default.
- W2810307430 cites W2120734937 @default.
- W2810307430 cites W2127817068 @default.
- W2810307430 cites W2129244720 @default.
- W2810307430 cites W2172256532 @default.
- W2810307430 cites W2270941958 @default.
- W2810307430 cites W2337627957 @default.
- W2810307430 cites W2338229301 @default.
- W2810307430 cites W2371039490 @default.
- W2810307430 cites W2492342376 @default.
- W2810307430 cites W4235452202 @default.
- W2810307430 doi "https://doi.org/10.26636/jtit.2018.119617" @default.
- W2810307430 hasPublicationYear "2018" @default.
- W2810307430 type Work @default.
- W2810307430 sameAs 2810307430 @default.
- W2810307430 citedByCount "5" @default.
- W2810307430 countsByYear W28103074302019 @default.
- W2810307430 countsByYear W28103074302022 @default.
- W2810307430 crossrefType "journal-article" @default.
- W2810307430 hasAuthorship W2810307430A5004732934 @default.
- W2810307430 hasAuthorship W2810307430A5016703888 @default.
- W2810307430 hasAuthorship W2810307430A5084537521 @default.
- W2810307430 hasBestOaLocation W28103074301 @default.
- W2810307430 hasConcept C131109320 @default.
- W2810307430 hasConcept C133892786 @default.
- W2810307430 hasConcept C138885662 @default.
- W2810307430 hasConcept C151989614 @default.
- W2810307430 hasConcept C153180895 @default.
- W2810307430 hasConcept C154945302 @default.
- W2810307430 hasConcept C2776401178 @default.
- W2810307430 hasConcept C28490314 @default.
- W2810307430 hasConcept C41008148 @default.
- W2810307430 hasConcept C41895202 @default.
- W2810307430 hasConcept C50644808 @default.
- W2810307430 hasConcept C52622490 @default.
- W2810307430 hasConcept C59883199 @default.
- W2810307430 hasConcept C61328038 @default.
- W2810307430 hasConcept C88485024 @default.
- W2810307430 hasConceptScore W2810307430C131109320 @default.
- W2810307430 hasConceptScore W2810307430C133892786 @default.
- W2810307430 hasConceptScore W2810307430C138885662 @default.
- W2810307430 hasConceptScore W2810307430C151989614 @default.
- W2810307430 hasConceptScore W2810307430C153180895 @default.
- W2810307430 hasConceptScore W2810307430C154945302 @default.
- W2810307430 hasConceptScore W2810307430C2776401178 @default.
- W2810307430 hasConceptScore W2810307430C28490314 @default.
- W2810307430 hasConceptScore W2810307430C41008148 @default.
- W2810307430 hasConceptScore W2810307430C41895202 @default.
- W2810307430 hasConceptScore W2810307430C50644808 @default.
- W2810307430 hasConceptScore W2810307430C52622490 @default.
- W2810307430 hasConceptScore W2810307430C59883199 @default.
- W2810307430 hasConceptScore W2810307430C61328038 @default.
- W2810307430 hasConceptScore W2810307430C88485024 @default.
- W2810307430 hasIssue "2018" @default.
- W2810307430 hasLocation W28103074301 @default.
- W2810307430 hasOpenAccess W2810307430 @default.
- W2810307430 hasPrimaryLocation W28103074301 @default.
- W2810307430 hasRelatedWork W2126455351 @default.
- W2810307430 hasRelatedWork W2129377384 @default.
- W2810307430 hasRelatedWork W2161510337 @default.
- W2810307430 hasRelatedWork W2189089965 @default.
- W2810307430 hasRelatedWork W2351127782 @default.
- W2810307430 hasRelatedWork W2577850991 @default.
- W2810307430 hasRelatedWork W2584483433 @default.
- W2810307430 hasRelatedWork W2685907518 @default.
- W2810307430 hasRelatedWork W3091924914 @default.
- W2810307430 hasRelatedWork W4210681067 @default.
- W2810307430 hasVolume "2" @default.
- W2810307430 isParatext "false" @default.
- W2810307430 isRetracted "false" @default.
- W2810307430 magId "2810307430" @default.
- W2810307430 workType "article" @default.