Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810335242> ?p ?o ?g. }
- W2810335242 endingPage "1113" @default.
- W2810335242 startingPage "1104" @default.
- W2810335242 abstract "This paper presents algorithms designed for one-dimensional (1-D) and 2-D surface electromyographic (S-EMG) signal compression. The 1-D approach is a wavelet transform based encoder applied to isometric and dynamic S-EMG signals. An adaptive estimation of the spectral shape is used to carry out dynamic bit allocation for vector quantization of transformed coefficients. Thus, an entropy coding is applied to minimize redundancy in quantized coefficient vector and to pack the data. In the 2-D approach algorithm, the isometric or dynamic S-EMG signal is properly segmented and arranged to build a 2-D representation. The high efficient video codec is used to encode the signal, using 16-bit-depth precision, all possible coding/prediction unit sizes, and all intra-coding modes. The encoders are evaluated with objective metrics, and a real signal data bank is used. Furthermore, performance comparisons are also shown in this paper, where the proposed methods have outperformed other efficient encoders reported in the literature." @default.
- W2810335242 created "2018-07-10" @default.
- W2810335242 creator A5042728283 @default.
- W2810335242 creator A5057251192 @default.
- W2810335242 creator A5068622262 @default.
- W2810335242 creator A5083802793 @default.
- W2810335242 date "2018-07-01" @default.
- W2810335242 modified "2023-09-25" @default.
- W2810335242 title "S-EMG Signal Compression in One-Dimensional and Two-Dimensional Approaches" @default.
- W2810335242 cites W1554206187 @default.
- W2810335242 cites W1603446744 @default.
- W2810335242 cites W1850808171 @default.
- W2810335242 cites W1947282229 @default.
- W2810335242 cites W1973255159 @default.
- W2810335242 cites W1981963824 @default.
- W2810335242 cites W2001061109 @default.
- W2810335242 cites W2005664860 @default.
- W2810335242 cites W2031325250 @default.
- W2810335242 cites W2037385953 @default.
- W2810335242 cites W2044470449 @default.
- W2810335242 cites W2047316101 @default.
- W2810335242 cites W2052700431 @default.
- W2810335242 cites W2053115824 @default.
- W2810335242 cites W2059139568 @default.
- W2810335242 cites W2063660172 @default.
- W2810335242 cites W2071067264 @default.
- W2810335242 cites W2074229150 @default.
- W2810335242 cites W2076364301 @default.
- W2810335242 cites W2098969519 @default.
- W2810335242 cites W2099123196 @default.
- W2810335242 cites W2099581590 @default.
- W2810335242 cites W2102695888 @default.
- W2810335242 cites W2108092828 @default.
- W2810335242 cites W2111393885 @default.
- W2810335242 cites W2112015574 @default.
- W2810335242 cites W2113111118 @default.
- W2810335242 cites W2116217906 @default.
- W2810335242 cites W2122169603 @default.
- W2810335242 cites W2125698390 @default.
- W2810335242 cites W2129652681 @default.
- W2810335242 cites W2134207998 @default.
- W2810335242 cites W2134383396 @default.
- W2810335242 cites W2137193414 @default.
- W2810335242 cites W2138202971 @default.
- W2810335242 cites W2139694428 @default.
- W2810335242 cites W2144011774 @default.
- W2810335242 cites W2146395539 @default.
- W2810335242 cites W2147129803 @default.
- W2810335242 cites W2148371116 @default.
- W2810335242 cites W2149250984 @default.
- W2810335242 cites W2149669452 @default.
- W2810335242 cites W2155229197 @default.
- W2810335242 cites W2161085588 @default.
- W2810335242 cites W2168438734 @default.
- W2810335242 cites W2241147999 @default.
- W2810335242 cites W2245520837 @default.
- W2810335242 cites W2249152912 @default.
- W2810335242 cites W2249309460 @default.
- W2810335242 cites W2339176498 @default.
- W2810335242 cites W2467211211 @default.
- W2810335242 cites W2532590838 @default.
- W2810335242 cites W2541550220 @default.
- W2810335242 cites W2593440111 @default.
- W2810335242 cites W2802460914 @default.
- W2810335242 doi "https://doi.org/10.1109/jbhi.2017.2765922" @default.
- W2810335242 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29969404" @default.
- W2810335242 hasPublicationYear "2018" @default.
- W2810335242 type Work @default.
- W2810335242 sameAs 2810335242 @default.
- W2810335242 citedByCount "12" @default.
- W2810335242 countsByYear W28103352422019 @default.
- W2810335242 countsByYear W28103352422020 @default.
- W2810335242 countsByYear W28103352422021 @default.
- W2810335242 countsByYear W28103352422022 @default.
- W2810335242 countsByYear W28103352422023 @default.
- W2810335242 crossrefType "journal-article" @default.
- W2810335242 hasAuthorship W2810335242A5042728283 @default.
- W2810335242 hasAuthorship W2810335242A5057251192 @default.
- W2810335242 hasAuthorship W2810335242A5068622262 @default.
- W2810335242 hasAuthorship W2810335242A5083802793 @default.
- W2810335242 hasConcept C106301342 @default.
- W2810335242 hasConcept C111919701 @default.
- W2810335242 hasConcept C11413529 @default.
- W2810335242 hasConcept C115961682 @default.
- W2810335242 hasConcept C118505674 @default.
- W2810335242 hasConcept C121332964 @default.
- W2810335242 hasConcept C153180895 @default.
- W2810335242 hasConcept C154945302 @default.
- W2810335242 hasConcept C161765866 @default.
- W2810335242 hasConcept C1769480 @default.
- W2810335242 hasConcept C199833920 @default.
- W2810335242 hasConcept C2778192920 @default.
- W2810335242 hasConcept C28490314 @default.
- W2810335242 hasConcept C41008148 @default.
- W2810335242 hasConcept C62520636 @default.
- W2810335242 hasConcept C78548338 @default.
- W2810335242 hasConcept C9390403 @default.
- W2810335242 hasConcept C9417928 @default.