Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810346253> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2810346253 abstract "One of the goals for the machine learning research is to improve the accuracy of the classification. Many research studies have focused on developing novel algorithms according to problem domains and statistical learning theory to continuously improve classification performance over the past decades. Recently, many researchers have found that performance bottleneck often occurs when only using a single classification algorithm, since each algorithm has its strength, but it also has its weakness. Ensemble learning, which combines several classifiers or hypotheses to become a strong classifier or learner, relies on the combination of various hypotheses rather than using state-of-the-art algorithms. In ensemble learning, hypothesis selection is crucial to performance, and the diversity of the selected hypotheses is an important selection criterion. This work proposes three algorithms focusing on generating a hierarchical hypothesis structure to achieve the goal of hypothesis selection, in which the two hypotheses are combined based on particular criterion. We conduct experiments on 8 data sets, and the experimental results indicate that the proposed method outperforms random forest, which is a state-of-the-art method." @default.
- W2810346253 created "2018-07-10" @default.
- W2810346253 creator A5031322893 @default.
- W2810346253 creator A5042008682 @default.
- W2810346253 creator A5070495513 @default.
- W2810346253 date "2017-07-01" @default.
- W2810346253 modified "2023-09-25" @default.
- W2810346253 title "Hierarchical hypothesis structure for ensemble learning" @default.
- W2810346253 cites W1479873353 @default.
- W2810346253 cites W1540371141 @default.
- W2810346253 cites W1587506815 @default.
- W2810346253 cites W1594031697 @default.
- W2810346253 cites W1966280301 @default.
- W2810346253 cites W2021687153 @default.
- W2810346253 cites W2026219386 @default.
- W2810346253 cites W2105464873 @default.
- W2810346253 cites W2122838776 @default.
- W2810346253 cites W2145073242 @default.
- W2810346253 cites W2156909104 @default.
- W2810346253 cites W2160547390 @default.
- W2810346253 cites W2163605009 @default.
- W2810346253 cites W2168020168 @default.
- W2810346253 cites W28136092 @default.
- W2810346253 cites W2911964244 @default.
- W2810346253 cites W2919115771 @default.
- W2810346253 doi "https://doi.org/10.1109/fskd.2017.8393044" @default.
- W2810346253 hasPublicationYear "2017" @default.
- W2810346253 type Work @default.
- W2810346253 sameAs 2810346253 @default.
- W2810346253 citedByCount "0" @default.
- W2810346253 crossrefType "proceedings-article" @default.
- W2810346253 hasAuthorship W2810346253A5031322893 @default.
- W2810346253 hasAuthorship W2810346253A5042008682 @default.
- W2810346253 hasAuthorship W2810346253A5070495513 @default.
- W2810346253 hasConcept C119857082 @default.
- W2810346253 hasConcept C149635348 @default.
- W2810346253 hasConcept C154945302 @default.
- W2810346253 hasConcept C169258074 @default.
- W2810346253 hasConcept C2780513914 @default.
- W2810346253 hasConcept C41008148 @default.
- W2810346253 hasConcept C45942800 @default.
- W2810346253 hasConcept C81917197 @default.
- W2810346253 hasConcept C95623464 @default.
- W2810346253 hasConceptScore W2810346253C119857082 @default.
- W2810346253 hasConceptScore W2810346253C149635348 @default.
- W2810346253 hasConceptScore W2810346253C154945302 @default.
- W2810346253 hasConceptScore W2810346253C169258074 @default.
- W2810346253 hasConceptScore W2810346253C2780513914 @default.
- W2810346253 hasConceptScore W2810346253C41008148 @default.
- W2810346253 hasConceptScore W2810346253C45942800 @default.
- W2810346253 hasConceptScore W2810346253C81917197 @default.
- W2810346253 hasConceptScore W2810346253C95623464 @default.
- W2810346253 hasLocation W28103462531 @default.
- W2810346253 hasOpenAccess W2810346253 @default.
- W2810346253 hasPrimaryLocation W28103462531 @default.
- W2810346253 hasRelatedWork W115552249 @default.
- W2810346253 hasRelatedWork W124719093 @default.
- W2810346253 hasRelatedWork W1988664775 @default.
- W2810346253 hasRelatedWork W2027548619 @default.
- W2810346253 hasRelatedWork W2104813983 @default.
- W2810346253 hasRelatedWork W2121836213 @default.
- W2810346253 hasRelatedWork W2134473739 @default.
- W2810346253 hasRelatedWork W2153244930 @default.
- W2810346253 hasRelatedWork W2293820727 @default.
- W2810346253 hasRelatedWork W2469490876 @default.
- W2810346253 hasRelatedWork W2552132622 @default.
- W2810346253 hasRelatedWork W2775687281 @default.
- W2810346253 hasRelatedWork W2782764416 @default.
- W2810346253 hasRelatedWork W2908530137 @default.
- W2810346253 hasRelatedWork W2947751188 @default.
- W2810346253 hasRelatedWork W2948695011 @default.
- W2810346253 hasRelatedWork W2982908447 @default.
- W2810346253 hasRelatedWork W2999368888 @default.
- W2810346253 hasRelatedWork W3179325884 @default.
- W2810346253 hasRelatedWork W3195653977 @default.
- W2810346253 isParatext "false" @default.
- W2810346253 isRetracted "false" @default.
- W2810346253 magId "2810346253" @default.
- W2810346253 workType "article" @default.