Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810347072> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2810347072 abstract "Distributed Bayesian inference or estimation in Internet of Things (IoT) has recently received much attention due to its broad application in the areas of object classification, target tracking and medical diagnosis etc. In many distributed IoT systems with limited resources, e.g. sensor networks and crowdsourcing systems, it is likely that only a few agents will have valuable information at any given time. Therefore, the paradigm of information-driven distributed sensing (IDDS) is essential to achieve efficient inference, where the resources are spent only on sensing and communicating valuable information. In this paper, we consider the problem of IDDS for efficient Bayesian inference with exponential family distributions. We first propose a centralized algorithm (C-IDDS) where a centralized controller exists to make sensing decisions for the sensing agents. As the centralized algorithm does not scale well in large systems, we continue to design a distributed algorithm (D-IDDS) where each individual sensing agents can make their own sensing decisions independently. Both C-IDDS and D-IDDS are online algorithms which can adapt to stochastic system conditions without any future information. Through rigorous theoretical analysis, we prove that the proposed algorithms can achieve an asymptotically optimal system-wide utility. A real testbed has been built to evaluate the performance of the proposed algorithms in real-world environments. Using the data from the real-world testbed and comparing with some baseline methods, we demonstrate the effectiveness of the proposed C-IDDS and D-IDDS algorithms." @default.
- W2810347072 created "2018-07-10" @default.
- W2810347072 creator A5030623138 @default.
- W2810347072 creator A5069771802 @default.
- W2810347072 creator A5076502653 @default.
- W2810347072 date "2018-06-01" @default.
- W2810347072 modified "2023-10-12" @default.
- W2810347072 title "Information-Driven Distributed Sensing for Efficient Bayesian Inference in Internet of Things Systems" @default.
- W2810347072 cites W1601808502 @default.
- W2810347072 cites W1965555277 @default.
- W2810347072 cites W1970240412 @default.
- W2810347072 cites W1970756365 @default.
- W2810347072 cites W1995875735 @default.
- W2810347072 cites W2025757280 @default.
- W2810347072 cites W2029455334 @default.
- W2810347072 cites W2092898962 @default.
- W2810347072 cites W2098721900 @default.
- W2810347072 cites W2106942061 @default.
- W2810347072 cites W2113830619 @default.
- W2810347072 cites W2115056380 @default.
- W2810347072 cites W2116175219 @default.
- W2810347072 cites W2125826911 @default.
- W2810347072 cites W2144931885 @default.
- W2810347072 cites W2157906103 @default.
- W2810347072 cites W2169207653 @default.
- W2810347072 cites W2171319957 @default.
- W2810347072 cites W2547789447 @default.
- W2810347072 cites W3100903055 @default.
- W2810347072 cites W4301852635 @default.
- W2810347072 doi "https://doi.org/10.1109/sahcn.2018.8397111" @default.
- W2810347072 hasPublicationYear "2018" @default.
- W2810347072 type Work @default.
- W2810347072 sameAs 2810347072 @default.
- W2810347072 citedByCount "2" @default.
- W2810347072 countsByYear W28103470722018 @default.
- W2810347072 countsByYear W28103470722019 @default.
- W2810347072 crossrefType "proceedings-article" @default.
- W2810347072 hasAuthorship W2810347072A5030623138 @default.
- W2810347072 hasAuthorship W2810347072A5069771802 @default.
- W2810347072 hasAuthorship W2810347072A5076502653 @default.
- W2810347072 hasConcept C107673813 @default.
- W2810347072 hasConcept C11413529 @default.
- W2810347072 hasConcept C119857082 @default.
- W2810347072 hasConcept C120314980 @default.
- W2810347072 hasConcept C124101348 @default.
- W2810347072 hasConcept C154945302 @default.
- W2810347072 hasConcept C160234255 @default.
- W2810347072 hasConcept C196921405 @default.
- W2810347072 hasConcept C2776214188 @default.
- W2810347072 hasConcept C31258907 @default.
- W2810347072 hasConcept C31395832 @default.
- W2810347072 hasConcept C41008148 @default.
- W2810347072 hasConceptScore W2810347072C107673813 @default.
- W2810347072 hasConceptScore W2810347072C11413529 @default.
- W2810347072 hasConceptScore W2810347072C119857082 @default.
- W2810347072 hasConceptScore W2810347072C120314980 @default.
- W2810347072 hasConceptScore W2810347072C124101348 @default.
- W2810347072 hasConceptScore W2810347072C154945302 @default.
- W2810347072 hasConceptScore W2810347072C160234255 @default.
- W2810347072 hasConceptScore W2810347072C196921405 @default.
- W2810347072 hasConceptScore W2810347072C2776214188 @default.
- W2810347072 hasConceptScore W2810347072C31258907 @default.
- W2810347072 hasConceptScore W2810347072C31395832 @default.
- W2810347072 hasConceptScore W2810347072C41008148 @default.
- W2810347072 hasLocation W28103470721 @default.
- W2810347072 hasOpenAccess W2810347072 @default.
- W2810347072 hasPrimaryLocation W28103470721 @default.
- W2810347072 hasRelatedWork W2104594922 @default.
- W2810347072 hasRelatedWork W2589314268 @default.
- W2810347072 hasRelatedWork W2753218748 @default.
- W2810347072 hasRelatedWork W2774409638 @default.
- W2810347072 hasRelatedWork W2789413038 @default.
- W2810347072 hasRelatedWork W2889562828 @default.
- W2810347072 hasRelatedWork W2952635455 @default.
- W2810347072 hasRelatedWork W2953280030 @default.
- W2810347072 hasRelatedWork W3002319139 @default.
- W2810347072 hasRelatedWork W4300815303 @default.
- W2810347072 isParatext "false" @default.
- W2810347072 isRetracted "false" @default.
- W2810347072 magId "2810347072" @default.
- W2810347072 workType "article" @default.