Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810349730> ?p ?o ?g. }
- W2810349730 endingPage "82" @default.
- W2810349730 startingPage "49" @default.
- W2810349730 abstract "Abstract A simple local two-relaxation-time Lattice Boltzmann numerical formulation (TRT-EMM) of the extended method of moments (EMM) is proposed for analysis of the spatial and temporal Taylor dispersion in d-dimensional streamwise-periodic stationary mesoscopic velocity field resolved in a piecewise-continuous porous media. The method provides an effective diffusivity, dispersion, skewness and kurtosis of the mean concentration profile and residence time distribution. The TRT-EMM solves a chain of steady-state heterogeneous advection–diffusion equations with the pre-computed space-variable mass-source and automatically undergoes diffusion-flux jump on the abrupt-porosity streamwise-normal interface. The temporal and spatial systems of moments are computed within the same run; the symmetric dispersion tensor can be restored from independent computations performed for each periodic mean-velocity axis; the numerical algorithm recursively extends for any order moment. We derive an exact form of the bulk equation and implicit closure relations, construct symbolic TRT-EMM solutions and determine specific relation between the equilibrium and the collision degrees of freedom viewing an exact parameterization by the physical non-dimensional numbers in two alternate situations: “parallel” fracture/matrix flow and “perpendicular” Darcy flow through porous blocks in “series”. Two-dimensional simulations in linear Brinkman flow around solid and through porous obstacles validate the method in comparison with the two heterogeneous direct LBM-ADE schemes with different anti-numerical-diffusion treatment which are proposed and examined in parallel. On the coarse grid, accuracy of the three moments is essentially determined by the free-tunable collision rate in all schemes, and especially TRT-EMM. However, operated within a single periodic cell, the TRT-EMM is many orders of magnitude faster than the direct solvers, numerical-diffusion free, more robust and much more capable for accuracy improving, high Peclet range and free-parameter influence reduction with the mesh refinement. The method is an efficient predicting tool for the Taylor dispersion, asymmetry and peakedness; moreover, it allows for an optimal analysis between the mutual effect of the flow regime, Peclet number, porosity, permeability and obstruction geometry." @default.
- W2810349730 created "2018-07-10" @default.
- W2810349730 creator A5049382194 @default.
- W2810349730 date "2018-08-01" @default.
- W2810349730 modified "2023-09-26" @default.
- W2810349730 title "Determination of the diffusivity, dispersion, skewness and kurtosis in heterogeneous porous flow. Part II: Lattice Boltzmann schemes with implicit interface" @default.
- W2810349730 cites W1574741443 @default.
- W2810349730 cites W1592012777 @default.
- W2810349730 cites W1687992015 @default.
- W2810349730 cites W1903949217 @default.
- W2810349730 cites W1965419874 @default.
- W2810349730 cites W1969472327 @default.
- W2810349730 cites W1971104486 @default.
- W2810349730 cites W1986483703 @default.
- W2810349730 cites W1996818420 @default.
- W2810349730 cites W1998250066 @default.
- W2810349730 cites W1998454664 @default.
- W2810349730 cites W2010945250 @default.
- W2810349730 cites W2012001237 @default.
- W2810349730 cites W2018738557 @default.
- W2810349730 cites W2023044810 @default.
- W2810349730 cites W2024081577 @default.
- W2810349730 cites W2025723755 @default.
- W2810349730 cites W2027777220 @default.
- W2810349730 cites W2035927295 @default.
- W2810349730 cites W2037457961 @default.
- W2810349730 cites W2038603526 @default.
- W2810349730 cites W2040589085 @default.
- W2810349730 cites W2042497845 @default.
- W2810349730 cites W2049263443 @default.
- W2810349730 cites W2050598089 @default.
- W2810349730 cites W2051161719 @default.
- W2810349730 cites W2055377325 @default.
- W2810349730 cites W2055407200 @default.
- W2810349730 cites W2061144246 @default.
- W2810349730 cites W2064098959 @default.
- W2810349730 cites W2069084258 @default.
- W2810349730 cites W2070257053 @default.
- W2810349730 cites W2096359889 @default.
- W2810349730 cites W2101231057 @default.
- W2810349730 cites W2118248968 @default.
- W2810349730 cites W2123571598 @default.
- W2810349730 cites W2136964092 @default.
- W2810349730 cites W2139090049 @default.
- W2810349730 cites W2143979414 @default.
- W2810349730 cites W2151135583 @default.
- W2810349730 cites W2187714357 @default.
- W2810349730 cites W2295909754 @default.
- W2810349730 cites W2314605371 @default.
- W2810349730 cites W2321547447 @default.
- W2810349730 cites W2325784639 @default.
- W2810349730 cites W2326138643 @default.
- W2810349730 cites W2333547105 @default.
- W2810349730 cites W2344460591 @default.
- W2810349730 cites W2438085202 @default.
- W2810349730 cites W2481450531 @default.
- W2810349730 cites W2571956264 @default.
- W2810349730 cites W2574555133 @default.
- W2810349730 cites W2575061902 @default.
- W2810349730 cites W2586652558 @default.
- W2810349730 cites W2620664370 @default.
- W2810349730 cites W2764136363 @default.
- W2810349730 cites W332575100 @default.
- W2810349730 cites W4250915412 @default.
- W2810349730 cites W863967364 @default.
- W2810349730 doi "https://doi.org/10.1016/j.advwatres.2018.05.006" @default.
- W2810349730 hasPublicationYear "2018" @default.
- W2810349730 type Work @default.
- W2810349730 sameAs 2810349730 @default.
- W2810349730 citedByCount "6" @default.
- W2810349730 countsByYear W28103497302019 @default.
- W2810349730 countsByYear W28103497302021 @default.
- W2810349730 crossrefType "journal-article" @default.
- W2810349730 hasAuthorship W2810349730A5049382194 @default.
- W2810349730 hasConcept C105569014 @default.
- W2810349730 hasConcept C105795698 @default.
- W2810349730 hasConcept C113843644 @default.
- W2810349730 hasConcept C120665830 @default.
- W2810349730 hasConcept C121332964 @default.
- W2810349730 hasConcept C121864883 @default.
- W2810349730 hasConcept C122342681 @default.
- W2810349730 hasConcept C129307140 @default.
- W2810349730 hasConcept C149782125 @default.
- W2810349730 hasConcept C157915830 @default.
- W2810349730 hasConcept C159985019 @default.
- W2810349730 hasConcept C166963901 @default.
- W2810349730 hasConcept C177562468 @default.
- W2810349730 hasConcept C192562407 @default.
- W2810349730 hasConcept C21821499 @default.
- W2810349730 hasConcept C33923547 @default.
- W2810349730 hasConcept C37668627 @default.
- W2810349730 hasConcept C57879066 @default.
- W2810349730 hasConcept C6648577 @default.
- W2810349730 hasConcept C97355855 @default.
- W2810349730 hasConceptScore W2810349730C105569014 @default.
- W2810349730 hasConceptScore W2810349730C105795698 @default.
- W2810349730 hasConceptScore W2810349730C113843644 @default.
- W2810349730 hasConceptScore W2810349730C120665830 @default.