Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810368869> ?p ?o ?g. }
- W2810368869 endingPage "78" @default.
- W2810368869 startingPage "62" @default.
- W2810368869 abstract "Given a linear regression model and an experimental region for the independent variable, the problem of finding an optimal approximate design calls for minimizing a convex optimality criterion over a convex set of information matrices of feasible approximate designs. For numerical solution pure gradient methods are often used by design theorists, as vertex direction, vertex exchange, multiplicative algorithms, or combinations hereof. These methods have two major deficiencies: a slow convergence rate after a quick but rough approximation to the optimum, and often a large support of the obtained nearly optimal design. The latter feature is related to the fact that the methods optimize in the space of design measures which is usually of high or even infinite dimension, whereas the dimension of the information matrices is often small or moderate. For such situations a quasi-Newton method is revisited which was originally established by Gaffke & Heiligers (1996). In the present paper new possibilities of its application are demonstrated. The algorithm optimizes in matrix space. It shows a good global and an excellent local convergence behavior resulting in an accurate approximation of the optimum. A crucial subroutine solves convex quadratic minimization over the set of information matrices via repeated linear minimization over that set, providing thus the quasi-Newton step of the algorithm. This may also be of interest as a tool for computing an approximate design from a given information matrix and such that the support size of the design keeps Carathéodory’s bound. Illustrations are given for D- and I-optimality in particular multivariate random coefficient regression models and for T-optimal discriminating design in univariate polynomial models. Moreover, the behavior of the algorithm is tested for cases of larger dimensions: D- and I-optimal design for a third order polynomial model in several variables on a discretized cube." @default.
- W2810368869 created "2018-07-10" @default.
- W2810368869 creator A5046644525 @default.
- W2810368869 creator A5060076559 @default.
- W2810368869 date "2019-01-01" @default.
- W2810368869 modified "2023-10-17" @default.
- W2810368869 title "Quasi-Newton algorithm for optimal approximate linear regression design: Optimization in matrix space" @default.
- W2810368869 cites W1884766003 @default.
- W2810368869 cites W1910301005 @default.
- W2810368869 cites W1968832822 @default.
- W2810368869 cites W1970563730 @default.
- W2810368869 cites W1997859086 @default.
- W2810368869 cites W2008158827 @default.
- W2810368869 cites W2008995896 @default.
- W2810368869 cites W2013317493 @default.
- W2810368869 cites W2027349279 @default.
- W2810368869 cites W2034365834 @default.
- W2810368869 cites W2041310552 @default.
- W2810368869 cites W2041374156 @default.
- W2810368869 cites W2045241733 @default.
- W2810368869 cites W2050045463 @default.
- W2810368869 cites W2072361960 @default.
- W2810368869 cites W2072691660 @default.
- W2810368869 cites W2072993912 @default.
- W2810368869 cites W2075209807 @default.
- W2810368869 cites W2077489786 @default.
- W2810368869 cites W2082108339 @default.
- W2810368869 cites W2087026810 @default.
- W2810368869 cites W2090951881 @default.
- W2810368869 cites W2092754314 @default.
- W2810368869 cites W2099063081 @default.
- W2810368869 cites W2104379479 @default.
- W2810368869 cites W2115070480 @default.
- W2810368869 cites W2214730400 @default.
- W2810368869 cites W2486473387 @default.
- W2810368869 cites W2962760613 @default.
- W2810368869 cites W2962818040 @default.
- W2810368869 cites W3105687256 @default.
- W2810368869 cites W4323237039 @default.
- W2810368869 doi "https://doi.org/10.1016/j.jspi.2018.03.005" @default.
- W2810368869 hasPublicationYear "2019" @default.
- W2810368869 type Work @default.
- W2810368869 sameAs 2810368869 @default.
- W2810368869 citedByCount "5" @default.
- W2810368869 countsByYear W28103688692019 @default.
- W2810368869 countsByYear W28103688692020 @default.
- W2810368869 countsByYear W28103688692022 @default.
- W2810368869 crossrefType "journal-article" @default.
- W2810368869 hasAuthorship W2810368869A5046644525 @default.
- W2810368869 hasAuthorship W2810368869A5060076559 @default.
- W2810368869 hasConcept C105795698 @default.
- W2810368869 hasConcept C106487976 @default.
- W2810368869 hasConcept C112680207 @default.
- W2810368869 hasConcept C11413529 @default.
- W2810368869 hasConcept C114614502 @default.
- W2810368869 hasConcept C126255220 @default.
- W2810368869 hasConcept C127162648 @default.
- W2810368869 hasConcept C134306372 @default.
- W2810368869 hasConcept C157972887 @default.
- W2810368869 hasConcept C159985019 @default.
- W2810368869 hasConcept C192562407 @default.
- W2810368869 hasConcept C2524010 @default.
- W2810368869 hasConcept C28826006 @default.
- W2810368869 hasConcept C29406490 @default.
- W2810368869 hasConcept C31258907 @default.
- W2810368869 hasConcept C33676613 @default.
- W2810368869 hasConcept C33923547 @default.
- W2810368869 hasConcept C41008148 @default.
- W2810368869 hasConcept C42747912 @default.
- W2810368869 hasConcept C57869625 @default.
- W2810368869 hasConceptScore W2810368869C105795698 @default.
- W2810368869 hasConceptScore W2810368869C106487976 @default.
- W2810368869 hasConceptScore W2810368869C112680207 @default.
- W2810368869 hasConceptScore W2810368869C11413529 @default.
- W2810368869 hasConceptScore W2810368869C114614502 @default.
- W2810368869 hasConceptScore W2810368869C126255220 @default.
- W2810368869 hasConceptScore W2810368869C127162648 @default.
- W2810368869 hasConceptScore W2810368869C134306372 @default.
- W2810368869 hasConceptScore W2810368869C157972887 @default.
- W2810368869 hasConceptScore W2810368869C159985019 @default.
- W2810368869 hasConceptScore W2810368869C192562407 @default.
- W2810368869 hasConceptScore W2810368869C2524010 @default.
- W2810368869 hasConceptScore W2810368869C28826006 @default.
- W2810368869 hasConceptScore W2810368869C29406490 @default.
- W2810368869 hasConceptScore W2810368869C31258907 @default.
- W2810368869 hasConceptScore W2810368869C33676613 @default.
- W2810368869 hasConceptScore W2810368869C33923547 @default.
- W2810368869 hasConceptScore W2810368869C41008148 @default.
- W2810368869 hasConceptScore W2810368869C42747912 @default.
- W2810368869 hasConceptScore W2810368869C57869625 @default.
- W2810368869 hasLocation W28103688691 @default.
- W2810368869 hasOpenAccess W2810368869 @default.
- W2810368869 hasPrimaryLocation W28103688691 @default.
- W2810368869 hasRelatedWork W1967606281 @default.
- W2810368869 hasRelatedWork W2018944617 @default.
- W2810368869 hasRelatedWork W2053243890 @default.
- W2810368869 hasRelatedWork W2351859806 @default.
- W2810368869 hasRelatedWork W2520696533 @default.