Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810369020> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2810369020 abstract "We live in the era of big data in all fields of activity and intensity. From econometrics and bioinformatics to robotics and aviation and from computational linguistics and social networks to traffic and transportation analytics, big data is the dominating factor of progress. Especially in the field of Intelligent Transportation Systems (ITS), the plethora of multisource traffic data has given a tremendous boost to the development of sophisticated systems for the confrontation of the several traffic related problems. One of the most challenging and at the same time crucial traffic related problems, which has significant impact in many ITS systems (e.g. Advanced Traveler Information Systems, multimodal routing systems, dynamic pricing systems, etc.), is the accurate and real-time traffic forecasting. The task of traffic forecasting, i.e. predicting the state of traffic in large scale urban and inter-urban networks within multiple intervals ahead in time, includes addressing several subproblems, like data acquisition from multiple sources (e.g. inductive loop detectors, moving vehicles, traffic cameras, etc.), preprocessing (outlier detection, missing data imputation, map-matching, etc.), integration and storage, design and development of complex algorithmic methods, overall network coverage of the forecasting results, performance issues, etc. In this chapter, the several state-of-the-art methods used in all aspects of the traffic forecasting problems are presented, with particular emphasis given on both the algorithmic and the efficiency aspects of the problem, in the light of the large amounts of available traffic data. In particular, the design of advanced traffic forecasting algorithms in large scale urban and inter-urban road networks are described along with their implementation and utilization on large amounts of real world traffic data." @default.
- W2810369020 created "2018-07-10" @default.
- W2810369020 creator A5004595458 @default.
- W2810369020 creator A5043860059 @default.
- W2810369020 creator A5077744079 @default.
- W2810369020 date "2018-07-04" @default.
- W2810369020 modified "2023-09-23" @default.
- W2810369020 title "Advanced Parametric Methods for Short-Term Traffic Forecasting in the Era of Big Data" @default.
- W2810369020 cites W1875626450 @default.
- W2810369020 cites W1968311321 @default.
- W2810369020 cites W1974786836 @default.
- W2810369020 cites W1975362087 @default.
- W2810369020 cites W1984009504 @default.
- W2810369020 cites W1987916558 @default.
- W2810369020 cites W1988726303 @default.
- W2810369020 cites W1990816055 @default.
- W2810369020 cites W2004353783 @default.
- W2810369020 cites W2005770708 @default.
- W2810369020 cites W2012051283 @default.
- W2810369020 cites W2018588330 @default.
- W2810369020 cites W2025360853 @default.
- W2810369020 cites W2047493229 @default.
- W2810369020 cites W2049952439 @default.
- W2810369020 cites W2059128538 @default.
- W2810369020 cites W2075407851 @default.
- W2810369020 cites W2119539043 @default.
- W2810369020 cites W2131739422 @default.
- W2810369020 cites W2150713865 @default.
- W2810369020 cites W2165991108 @default.
- W2810369020 cites W2293708710 @default.
- W2810369020 cites W2343970958 @default.
- W2810369020 cites W2473586548 @default.
- W2810369020 cites W2477834368 @default.
- W2810369020 cites W2483705917 @default.
- W2810369020 cites W252542266 @default.
- W2810369020 cites W2593182953 @default.
- W2810369020 cites W2613331518 @default.
- W2810369020 cites W2624190409 @default.
- W2810369020 cites W4254182148 @default.
- W2810369020 doi "https://doi.org/10.1007/978-3-319-94030-4_9" @default.
- W2810369020 hasPublicationYear "2018" @default.
- W2810369020 type Work @default.
- W2810369020 sameAs 2810369020 @default.
- W2810369020 citedByCount "1" @default.
- W2810369020 countsByYear W28103690202019 @default.
- W2810369020 crossrefType "book-chapter" @default.
- W2810369020 hasAuthorship W2810369020A5004595458 @default.
- W2810369020 hasAuthorship W2810369020A5043860059 @default.
- W2810369020 hasAuthorship W2810369020A5077744079 @default.
- W2810369020 hasConcept C124101348 @default.
- W2810369020 hasConcept C127413603 @default.
- W2810369020 hasConcept C154945302 @default.
- W2810369020 hasConcept C176715033 @default.
- W2810369020 hasConcept C22212356 @default.
- W2810369020 hasConcept C41008148 @default.
- W2810369020 hasConcept C42693407 @default.
- W2810369020 hasConcept C47796450 @default.
- W2810369020 hasConcept C75684735 @default.
- W2810369020 hasConcept C79403827 @default.
- W2810369020 hasConceptScore W2810369020C124101348 @default.
- W2810369020 hasConceptScore W2810369020C127413603 @default.
- W2810369020 hasConceptScore W2810369020C154945302 @default.
- W2810369020 hasConceptScore W2810369020C176715033 @default.
- W2810369020 hasConceptScore W2810369020C22212356 @default.
- W2810369020 hasConceptScore W2810369020C41008148 @default.
- W2810369020 hasConceptScore W2810369020C42693407 @default.
- W2810369020 hasConceptScore W2810369020C47796450 @default.
- W2810369020 hasConceptScore W2810369020C75684735 @default.
- W2810369020 hasConceptScore W2810369020C79403827 @default.
- W2810369020 hasLocation W28103690201 @default.
- W2810369020 hasOpenAccess W2810369020 @default.
- W2810369020 hasPrimaryLocation W28103690201 @default.
- W2810369020 hasRelatedWork W2036785686 @default.
- W2810369020 hasRelatedWork W2324291783 @default.
- W2810369020 hasRelatedWork W2355119833 @default.
- W2810369020 hasRelatedWork W2802508687 @default.
- W2810369020 hasRelatedWork W2810369020 @default.
- W2810369020 hasRelatedWork W2909899573 @default.
- W2810369020 hasRelatedWork W2973192971 @default.
- W2810369020 hasRelatedWork W4220816362 @default.
- W2810369020 hasRelatedWork W4238527529 @default.
- W2810369020 hasRelatedWork W4244326298 @default.
- W2810369020 isParatext "false" @default.
- W2810369020 isRetracted "false" @default.
- W2810369020 magId "2810369020" @default.
- W2810369020 workType "book-chapter" @default.