Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810369194> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2810369194 endingPage "220" @default.
- W2810369194 startingPage "211" @default.
- W2810369194 abstract "Data mining tools and techniques allow an organization to make creative decisions and subsequently do proper planning. Clustering is used to determine the objects that are similar in characteristics and group them together. K-means clustering method chooses random cluster centres (initial centroid), one for each centroid, and this is the major weakness of K-means. The performance and quality of K-means strongly depends on the initial guess of centres (centroid). By augmenting K-means with a technique of selecting centroids, several modifications have been suggested in research on clustering. The first two main authors of this paper have also developed three algorithms that unlike K-means do not perform random generation of the initial centres and actually produce same set of initial centroids for the same input data. These developed algorithms are sum of distance clustering (SODC), distance-based clustering algorithm (DBCA) and farthest distributed centroid clustering (FDCC). We present a brief survey of the algorithms available in the research on modification of initial centroids for K-means clustering algorithm and further describe the developed algorithm farthest distributed centroid clustering in this paper. The experimental results carried out show that farthest distributed centroid clustering algorithm produces better quality clusters than the partitional clustering algorithm, agglomerative hierarchical clustering algorithm and the hierarchical partitioning clustering algorithm." @default.
- W2810369194 created "2018-07-10" @default.
- W2810369194 creator A5056259476 @default.
- W2810369194 creator A5058405202 @default.
- W2810369194 creator A5086012420 @default.
- W2810369194 date "2018-06-13" @default.
- W2810369194 modified "2023-09-26" @default.
- W2810369194 title "A Study on Initial Centroids Selection for Partitional Clustering Algorithms" @default.
- W2810369194 cites W1566474244 @default.
- W2810369194 cites W1666447063 @default.
- W2810369194 cites W1859864292 @default.
- W2810369194 cites W1916665293 @default.
- W2810369194 cites W1970037791 @default.
- W2810369194 cites W1972098431 @default.
- W2810369194 cites W1975817262 @default.
- W2810369194 cites W1990130348 @default.
- W2810369194 cites W2037351086 @default.
- W2810369194 cites W2109224747 @default.
- W2810369194 cites W2109868644 @default.
- W2810369194 cites W2114504926 @default.
- W2810369194 cites W2140405352 @default.
- W2810369194 cites W2142458924 @default.
- W2810369194 cites W2150593711 @default.
- W2810369194 cites W2151036524 @default.
- W2810369194 cites W2911302472 @default.
- W2810369194 cites W4255306344 @default.
- W2810369194 doi "https://doi.org/10.1007/978-981-10-8848-3_21" @default.
- W2810369194 hasPublicationYear "2018" @default.
- W2810369194 type Work @default.
- W2810369194 sameAs 2810369194 @default.
- W2810369194 citedByCount "7" @default.
- W2810369194 countsByYear W28103691942020 @default.
- W2810369194 countsByYear W28103691942021 @default.
- W2810369194 countsByYear W28103691942022 @default.
- W2810369194 countsByYear W28103691942023 @default.
- W2810369194 crossrefType "book-chapter" @default.
- W2810369194 hasAuthorship W2810369194A5056259476 @default.
- W2810369194 hasAuthorship W2810369194A5058405202 @default.
- W2810369194 hasAuthorship W2810369194A5086012420 @default.
- W2810369194 hasConcept C104047586 @default.
- W2810369194 hasConcept C11413529 @default.
- W2810369194 hasConcept C115328559 @default.
- W2810369194 hasConcept C124101348 @default.
- W2810369194 hasConcept C146599234 @default.
- W2810369194 hasConcept C153180895 @default.
- W2810369194 hasConcept C154945302 @default.
- W2810369194 hasConcept C22648726 @default.
- W2810369194 hasConcept C33704608 @default.
- W2810369194 hasConcept C41008148 @default.
- W2810369194 hasConcept C73555534 @default.
- W2810369194 hasConcept C92835128 @default.
- W2810369194 hasConcept C94641424 @default.
- W2810369194 hasConceptScore W2810369194C104047586 @default.
- W2810369194 hasConceptScore W2810369194C11413529 @default.
- W2810369194 hasConceptScore W2810369194C115328559 @default.
- W2810369194 hasConceptScore W2810369194C124101348 @default.
- W2810369194 hasConceptScore W2810369194C146599234 @default.
- W2810369194 hasConceptScore W2810369194C153180895 @default.
- W2810369194 hasConceptScore W2810369194C154945302 @default.
- W2810369194 hasConceptScore W2810369194C22648726 @default.
- W2810369194 hasConceptScore W2810369194C33704608 @default.
- W2810369194 hasConceptScore W2810369194C41008148 @default.
- W2810369194 hasConceptScore W2810369194C73555534 @default.
- W2810369194 hasConceptScore W2810369194C92835128 @default.
- W2810369194 hasConceptScore W2810369194C94641424 @default.
- W2810369194 hasLocation W28103691941 @default.
- W2810369194 hasOpenAccess W2810369194 @default.
- W2810369194 hasPrimaryLocation W28103691941 @default.
- W2810369194 hasRelatedWork W2151036524 @default.
- W2810369194 hasRelatedWork W2592952084 @default.
- W2810369194 hasRelatedWork W2810369194 @default.
- W2810369194 hasRelatedWork W2942177010 @default.
- W2810369194 hasRelatedWork W3168768270 @default.
- W2810369194 hasRelatedWork W4200404937 @default.
- W2810369194 hasRelatedWork W4310575853 @default.
- W2810369194 hasRelatedWork W1491908038 @default.
- W2810369194 hasRelatedWork W2183813428 @default.
- W2810369194 hasRelatedWork W3092684173 @default.
- W2810369194 isParatext "false" @default.
- W2810369194 isRetracted "false" @default.
- W2810369194 magId "2810369194" @default.
- W2810369194 workType "book-chapter" @default.