Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810388727> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2810388727 abstract "Prediction and classification of time-series data play a vital role in multiple fields. This paper aims to compare modern machine learning techniques to analyze time series data. A discussion of existing algorithms is presented. Artificial Neural Networks have seen major applications in various computational fields in diverse ways. Its application extends to time-series data in an essential way. A number of recently developed Artificial Neural Network approaches to time-series prediction are provided. We discuss merits and demerits of each algorithm are. We then provide a comparative study of the approaches and address their applications." @default.
- W2810388727 created "2018-07-10" @default.
- W2810388727 creator A5056479671 @default.
- W2810388727 creator A5064570061 @default.
- W2810388727 date "2018-01-01" @default.
- W2810388727 modified "2023-09-27" @default.
- W2810388727 title "A study on neural networks approach to time-series analysis" @default.
- W2810388727 cites W1980462675 @default.
- W2810388727 cites W1993717606 @default.
- W2810388727 cites W2013668940 @default.
- W2810388727 cites W2038235550 @default.
- W2810388727 cites W2117829824 @default.
- W2810388727 cites W2168618665 @default.
- W2810388727 cites W2537903277 @default.
- W2810388727 cites W2561754033 @default.
- W2810388727 cites W2585008544 @default.
- W2810388727 cites W2619033034 @default.
- W2810388727 cites W4236047370 @default.
- W2810388727 doi "https://doi.org/10.1109/icisc.2018.8399024" @default.
- W2810388727 hasPublicationYear "2018" @default.
- W2810388727 type Work @default.
- W2810388727 sameAs 2810388727 @default.
- W2810388727 citedByCount "2" @default.
- W2810388727 countsByYear W28103887272020 @default.
- W2810388727 countsByYear W28103887272022 @default.
- W2810388727 crossrefType "proceedings-article" @default.
- W2810388727 hasAuthorship W2810388727A5056479671 @default.
- W2810388727 hasAuthorship W2810388727A5064570061 @default.
- W2810388727 hasConcept C119857082 @default.
- W2810388727 hasConcept C124101348 @default.
- W2810388727 hasConcept C143724316 @default.
- W2810388727 hasConcept C151406439 @default.
- W2810388727 hasConcept C151730666 @default.
- W2810388727 hasConcept C154945302 @default.
- W2810388727 hasConcept C41008148 @default.
- W2810388727 hasConcept C50644808 @default.
- W2810388727 hasConcept C86803240 @default.
- W2810388727 hasConceptScore W2810388727C119857082 @default.
- W2810388727 hasConceptScore W2810388727C124101348 @default.
- W2810388727 hasConceptScore W2810388727C143724316 @default.
- W2810388727 hasConceptScore W2810388727C151406439 @default.
- W2810388727 hasConceptScore W2810388727C151730666 @default.
- W2810388727 hasConceptScore W2810388727C154945302 @default.
- W2810388727 hasConceptScore W2810388727C41008148 @default.
- W2810388727 hasConceptScore W2810388727C50644808 @default.
- W2810388727 hasConceptScore W2810388727C86803240 @default.
- W2810388727 hasLocation W28103887271 @default.
- W2810388727 hasOpenAccess W2810388727 @default.
- W2810388727 hasPrimaryLocation W28103887271 @default.
- W2810388727 hasRelatedWork W1632690555 @default.
- W2810388727 hasRelatedWork W2156223678 @default.
- W2810388727 hasRelatedWork W2242271381 @default.
- W2810388727 hasRelatedWork W2357809648 @default.
- W2810388727 hasRelatedWork W2378555542 @default.
- W2810388727 hasRelatedWork W2381421930 @default.
- W2810388727 hasRelatedWork W2990514669 @default.
- W2810388727 hasRelatedWork W4309045103 @default.
- W2810388727 hasRelatedWork W1629725936 @default.
- W2810388727 hasRelatedWork W2393723963 @default.
- W2810388727 isParatext "false" @default.
- W2810388727 isRetracted "false" @default.
- W2810388727 magId "2810388727" @default.
- W2810388727 workType "article" @default.