Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810444994> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2810444994 endingPage "43" @default.
- W2810444994 startingPage "28" @default.
- W2810444994 abstract "Abstract The main goal of this study was to assess the potential of SAR backscatter signatures (RH and RV) retrieved from hybrid-polarized RISAT-1 SAR data in providing relevant information about the wheat growth parameters (leaf area index or LAI, plant water content or PWC, plant volume or PV and wet biomass or WB) over the entire growing season. The study was carried out over the parts of Bharatpur and Mathura districts located in Rajasthan and Uttar Pradesh (India), respectively. The three-date time series hybrid-polarized dataset was collected coincident to which a comprehensive ground truth campaign was organised. We propose that refining the total backscatter (σtotal0) values after minimising the effect of underlying/background soil cover, would result in more accurate retrieval of plant parameters since it is the vegetation backscatter, which ultimately has a direct correlation with the crop biophysical parameters. It was achieved using a semi-empirical water cloud model (WCM) based approach. The applicability of four different combinations of canopy descriptors, i.e. leaf area index (LAI), plant water content (PWC), leaf water area index (LWAI) and interaction factor (IF that takes into consideration the moisture distribution per unit volume) was tested on the RH and RV backscatter. We found that WCM based on LAI and IF as the two canopy descriptors modelled the total backscatter with a significantly high coefficient of determination (R2 = 0.90 and 0.85, respectively) and RMSE of 1.18 and 1.25 dB, respectively. Subsequently, this set was used to retrieve the soil-corrected vegetation backscatter (σveg0) values. A comparative evaluation of the retrieval accuracy between plant parameters estimated from σtotal0 (σT_RHo, σT_RVo) and σveg0 (σV_RHo, σV_RVo) was performed using rigorously trained multi-layer perceptron (MLP) neural networks. The findings suggest that the prediction accuracy considerably improved when the backscatter of underlying/background soil cover was eliminated. The designed networks (with σtotal0 as input) retrieved plant water content and plant volume with the highest accuracy of 0.82 and 0.80, respectively while it increased dramatically to 0.87 and 0.89 when the inputs were substituted by σveg0. The present study is a first step towards retrieving crop parameters from hybrid-polarized data and thus possesses the potential to serve as a reference for further research initiatives." @default.
- W2810444994 created "2018-07-10" @default.
- W2810444994 creator A5048320845 @default.
- W2810444994 creator A5050577178 @default.
- W2810444994 creator A5091172006 @default.
- W2810444994 date "2018-10-01" @default.
- W2810444994 modified "2023-10-14" @default.
- W2810444994 title "Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT-1 SAR data" @default.
- W2810444994 cites W1967791380 @default.
- W2810444994 cites W1971429204 @default.
- W2810444994 cites W1972226891 @default.
- W2810444994 cites W1974110440 @default.
- W2810444994 cites W1976505356 @default.
- W2810444994 cites W1982051579 @default.
- W2810444994 cites W1982847047 @default.
- W2810444994 cites W1985015594 @default.
- W2810444994 cites W1987440034 @default.
- W2810444994 cites W1988128726 @default.
- W2810444994 cites W1994490949 @default.
- W2810444994 cites W1999695055 @default.
- W2810444994 cites W2014917534 @default.
- W2810444994 cites W2015422731 @default.
- W2810444994 cites W2044556742 @default.
- W2810444994 cites W2064995156 @default.
- W2810444994 cites W2073527340 @default.
- W2810444994 cites W2077919084 @default.
- W2810444994 cites W2084952127 @default.
- W2810444994 cites W2087070363 @default.
- W2810444994 cites W2096670339 @default.
- W2810444994 cites W2097666088 @default.
- W2810444994 cites W2101259152 @default.
- W2810444994 cites W2102075521 @default.
- W2810444994 cites W2119295421 @default.
- W2810444994 cites W2121909975 @default.
- W2810444994 cites W2122837107 @default.
- W2810444994 cites W2126087248 @default.
- W2810444994 cites W2132671857 @default.
- W2810444994 cites W2135543109 @default.
- W2810444994 cites W2136185668 @default.
- W2810444994 cites W2139712007 @default.
- W2810444994 cites W2141348340 @default.
- W2810444994 cites W2145697390 @default.
- W2810444994 cites W2149580466 @default.
- W2810444994 cites W2150464481 @default.
- W2810444994 cites W2152863443 @default.
- W2810444994 cites W2153598078 @default.
- W2810444994 cites W2160982437 @default.
- W2810444994 cites W2161527913 @default.
- W2810444994 cites W2167343080 @default.
- W2810444994 cites W2167718298 @default.
- W2810444994 cites W2171369471 @default.
- W2810444994 cites W2261272073 @default.
- W2810444994 cites W2400974733 @default.
- W2810444994 cites W2478498158 @default.
- W2810444994 cites W2499691472 @default.
- W2810444994 cites W2551989100 @default.
- W2810444994 doi "https://doi.org/10.1016/j.rse.2018.06.014" @default.
- W2810444994 hasPublicationYear "2018" @default.
- W2810444994 type Work @default.
- W2810444994 sameAs 2810444994 @default.
- W2810444994 citedByCount "33" @default.
- W2810444994 countsByYear W28104449942019 @default.
- W2810444994 countsByYear W28104449942020 @default.
- W2810444994 countsByYear W28104449942021 @default.
- W2810444994 countsByYear W28104449942022 @default.
- W2810444994 countsByYear W28104449942023 @default.
- W2810444994 crossrefType "journal-article" @default.
- W2810444994 hasAuthorship W2810444994A5048320845 @default.
- W2810444994 hasAuthorship W2810444994A5050577178 @default.
- W2810444994 hasAuthorship W2810444994A5091172006 @default.
- W2810444994 hasConcept C127313418 @default.
- W2810444994 hasConcept C39432304 @default.
- W2810444994 hasConcept C62649853 @default.
- W2810444994 hasConcept C87360688 @default.
- W2810444994 hasConceptScore W2810444994C127313418 @default.
- W2810444994 hasConceptScore W2810444994C39432304 @default.
- W2810444994 hasConceptScore W2810444994C62649853 @default.
- W2810444994 hasConceptScore W2810444994C87360688 @default.
- W2810444994 hasLocation W28104449941 @default.
- W2810444994 hasOpenAccess W2810444994 @default.
- W2810444994 hasPrimaryLocation W28104449941 @default.
- W2810444994 hasRelatedWork W1897136002 @default.
- W2810444994 hasRelatedWork W1966991339 @default.
- W2810444994 hasRelatedWork W1997204484 @default.
- W2810444994 hasRelatedWork W2116890486 @default.
- W2810444994 hasRelatedWork W2152091220 @default.
- W2810444994 hasRelatedWork W2167059547 @default.
- W2810444994 hasRelatedWork W2167226100 @default.
- W2810444994 hasRelatedWork W2769737643 @default.
- W2810444994 hasRelatedWork W3013942893 @default.
- W2810444994 hasRelatedWork W4252699458 @default.
- W2810444994 hasVolume "216" @default.
- W2810444994 isParatext "false" @default.
- W2810444994 isRetracted "false" @default.
- W2810444994 magId "2810444994" @default.
- W2810444994 workType "article" @default.