Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810474688> ?p ?o ?g. }
- W2810474688 abstract "Machine learning approaches have been increasingly used in the neuroimaging field for the design of computer-aided diagnosis systems. In this paper, we focus on the ability of these methods to provide interpretable information about the brain regions that are the most informative about the disease or condition of interest. In particular, we investigate the benefit of group-based, instead of voxel-based, analyses in the context of Random Forests. Assuming a prior division of the voxels into non overlapping groups (defined by an atlas), we propose several procedures to derive group importances from individual voxel importances derived from Random Forests models. We then adapt several permutation schemes to turn group importance scores into more interpretable statistical scores that allow to determine the truly relevant groups in the importance rankings. The good behaviour of these methods is first assessed on artificial datasets. Then, they are applied on our own dataset of FDG-PET scans to identify the brain regions involved in the prognosis of Alzheimer's disease." @default.
- W2810474688 created "2018-07-10" @default.
- W2810474688 creator A5002322091 @default.
- W2810474688 creator A5004412819 @default.
- W2810474688 creator A5005472608 @default.
- W2810474688 creator A5006933724 @default.
- W2810474688 creator A5072803805 @default.
- W2810474688 date "2018-06-29" @default.
- W2810474688 modified "2023-10-07" @default.
- W2810474688 title "Random Forests Based Group Importance Scores and Their Statistical Interpretation: Application for Alzheimer's Disease" @default.
- W2810474688 cites W1165298439 @default.
- W2810474688 cites W1785021972 @default.
- W2810474688 cites W1875061881 @default.
- W2810474688 cites W1964895626 @default.
- W2810474688 cites W1970322616 @default.
- W2810474688 cites W1970858190 @default.
- W2810474688 cites W1987011701 @default.
- W2810474688 cites W2000658130 @default.
- W2810474688 cites W2007804187 @default.
- W2810474688 cites W2008056655 @default.
- W2810474688 cites W200978175 @default.
- W2810474688 cites W2014418634 @default.
- W2810474688 cites W2019161608 @default.
- W2810474688 cites W2019583087 @default.
- W2810474688 cites W2023787333 @default.
- W2810474688 cites W2036439084 @default.
- W2810474688 cites W2041050058 @default.
- W2810474688 cites W2045185094 @default.
- W2810474688 cites W2046035753 @default.
- W2810474688 cites W2054648295 @default.
- W2810474688 cites W2056132907 @default.
- W2810474688 cites W2058046532 @default.
- W2810474688 cites W2059742622 @default.
- W2810474688 cites W2081481111 @default.
- W2810474688 cites W2082429191 @default.
- W2810474688 cites W2086978209 @default.
- W2810474688 cites W2096410114 @default.
- W2810474688 cites W2102636708 @default.
- W2810474688 cites W2107564884 @default.
- W2810474688 cites W2112579276 @default.
- W2810474688 cites W2113381189 @default.
- W2810474688 cites W2113708991 @default.
- W2810474688 cites W2117873449 @default.
- W2810474688 cites W2118792782 @default.
- W2810474688 cites W2122320288 @default.
- W2810474688 cites W2122825543 @default.
- W2810474688 cites W2124114508 @default.
- W2810474688 cites W2134858198 @default.
- W2810474688 cites W2143426320 @default.
- W2810474688 cites W2143593953 @default.
- W2810474688 cites W2146089088 @default.
- W2810474688 cites W2155367389 @default.
- W2810474688 cites W2158863190 @default.
- W2810474688 cites W2159122349 @default.
- W2810474688 cites W2163739552 @default.
- W2810474688 cites W2165206443 @default.
- W2810474688 cites W2166446427 @default.
- W2810474688 cites W2171831801 @default.
- W2810474688 cites W2217442075 @default.
- W2810474688 cites W2580241126 @default.
- W2810474688 cites W2606546398 @default.
- W2810474688 cites W2626904196 @default.
- W2810474688 cites W2781572850 @default.
- W2810474688 cites W2911964244 @default.
- W2810474688 doi "https://doi.org/10.3389/fnins.2018.00411" @default.
- W2810474688 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6034092" @default.
- W2810474688 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30008658" @default.
- W2810474688 hasPublicationYear "2018" @default.
- W2810474688 type Work @default.
- W2810474688 sameAs 2810474688 @default.
- W2810474688 citedByCount "10" @default.
- W2810474688 countsByYear W28104746882019 @default.
- W2810474688 countsByYear W28104746882020 @default.
- W2810474688 countsByYear W28104746882021 @default.
- W2810474688 countsByYear W28104746882022 @default.
- W2810474688 countsByYear W28104746882023 @default.
- W2810474688 crossrefType "journal-article" @default.
- W2810474688 hasAuthorship W2810474688A5002322091 @default.
- W2810474688 hasAuthorship W2810474688A5004412819 @default.
- W2810474688 hasAuthorship W2810474688A5005472608 @default.
- W2810474688 hasAuthorship W2810474688A5006933724 @default.
- W2810474688 hasAuthorship W2810474688A5072803805 @default.
- W2810474688 hasBestOaLocation W28104746881 @default.
- W2810474688 hasConcept C119857082 @default.
- W2810474688 hasConcept C121332964 @default.
- W2810474688 hasConcept C153180895 @default.
- W2810474688 hasConcept C154945302 @default.
- W2810474688 hasConcept C15744967 @default.
- W2810474688 hasConcept C166957645 @default.
- W2810474688 hasConcept C169258074 @default.
- W2810474688 hasConcept C169760540 @default.
- W2810474688 hasConcept C200985842 @default.
- W2810474688 hasConcept C202444582 @default.
- W2810474688 hasConcept C204321447 @default.
- W2810474688 hasConcept C205649164 @default.
- W2810474688 hasConcept C21308566 @default.
- W2810474688 hasConcept C24890656 @default.
- W2810474688 hasConcept C2524010 @default.
- W2810474688 hasConcept C2777210771 @default.
- W2810474688 hasConcept C2779343474 @default.