Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810530730> ?p ?o ?g. }
- W2810530730 endingPage "477" @default.
- W2810530730 startingPage "469" @default.
- W2810530730 abstract "The selection of samples for modelling of visible and near infrared (vis-NIR) spectra for prediction of soil organic carbon (OC) is a crucial step for improving model prediction performance. This paper aims at comparing three soil sample selection methods coupled with spiking technique for improving on-line prediction performance of OC. Sample selection methods included random selection (RS), Kennard-Stone (KS) algorithm and similarity analysis (SA). Soil vis-NIR spectra was measured with an on-line fibre-type vis-NIR spectrophotometer (tec5 Technology for Spectroscopy, Germany), with a spectral range of 305–2200 nm. A multiple field sample set (268 samples) was merged with samples (148 samples) collected from one target field, and the resulted sample set was subjected to the three sample selection methods. After dividing spectra into calibration and prediction sets, partial least squares regression (PLSR) was run on the calibration set to develop calibration models for OC, and resulted models were validated using samples of the prediction set. Results show that SA performed generally better than its competitors, especially when there were 58 spiked samples used in the calibration set (54% of total spiked samples of 106), with the best residual prediction deviation (RPD) and root mean squares error of prediction (RMSEP) of 2.14–2.54 and 0.16–0.15% for laboratory and on-line prediction. KS and RS performed similarly, but depending on the size of the calibration set, KS produced slightly better models. This indicates that the proposed SA coupled with spiking holds great potential in the optimization of a calibration set size and may serve as a novel and efficient tool for balancing the cost and quality of vis–NIR calibrations for estimating OC." @default.
- W2810530730 created "2018-07-10" @default.
- W2810530730 creator A5033227035 @default.
- W2810530730 creator A5089753073 @default.
- W2810530730 date "2018-08-01" @default.
- W2810530730 modified "2023-10-03" @default.
- W2810530730 title "Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy" @default.
- W2810530730 cites W1148445081 @default.
- W2810530730 cites W1190219959 @default.
- W2810530730 cites W1202797729 @default.
- W2810530730 cites W1531923005 @default.
- W2810530730 cites W1592341820 @default.
- W2810530730 cites W1970488785 @default.
- W2810530730 cites W1973273412 @default.
- W2810530730 cites W1975813392 @default.
- W2810530730 cites W1976144991 @default.
- W2810530730 cites W1981420979 @default.
- W2810530730 cites W1981858174 @default.
- W2810530730 cites W1986948870 @default.
- W2810530730 cites W1990547462 @default.
- W2810530730 cites W1991496971 @default.
- W2810530730 cites W1993720070 @default.
- W2810530730 cites W2010212234 @default.
- W2810530730 cites W2013629863 @default.
- W2810530730 cites W2017422910 @default.
- W2810530730 cites W2034464985 @default.
- W2810530730 cites W2035777719 @default.
- W2810530730 cites W2039676451 @default.
- W2810530730 cites W2043840432 @default.
- W2810530730 cites W2052903566 @default.
- W2810530730 cites W2064345732 @default.
- W2810530730 cites W2068499562 @default.
- W2810530730 cites W2072068660 @default.
- W2810530730 cites W2075140676 @default.
- W2810530730 cites W2086664186 @default.
- W2810530730 cites W2088387982 @default.
- W2810530730 cites W2090785325 @default.
- W2810530730 cites W2092927559 @default.
- W2810530730 cites W2100135856 @default.
- W2810530730 cites W2101113206 @default.
- W2810530730 cites W2112298302 @default.
- W2810530730 cites W2134339355 @default.
- W2810530730 cites W2140127862 @default.
- W2810530730 cites W2158225094 @default.
- W2810530730 cites W2292439029 @default.
- W2810530730 cites W2326896681 @default.
- W2810530730 cites W2399675776 @default.
- W2810530730 cites W2556587018 @default.
- W2810530730 cites W2563958088 @default.
- W2810530730 cites W72017157 @default.
- W2810530730 cites W91263512 @default.
- W2810530730 doi "https://doi.org/10.1016/j.compag.2018.06.042" @default.
- W2810530730 hasPublicationYear "2018" @default.
- W2810530730 type Work @default.
- W2810530730 sameAs 2810530730 @default.
- W2810530730 citedByCount "73" @default.
- W2810530730 countsByYear W28105307302019 @default.
- W2810530730 countsByYear W28105307302020 @default.
- W2810530730 countsByYear W28105307302021 @default.
- W2810530730 countsByYear W28105307302022 @default.
- W2810530730 countsByYear W28105307302023 @default.
- W2810530730 crossrefType "journal-article" @default.
- W2810530730 hasAuthorship W2810530730A5033227035 @default.
- W2810530730 hasAuthorship W2810530730A5089753073 @default.
- W2810530730 hasConcept C105795698 @default.
- W2810530730 hasConcept C113196181 @default.
- W2810530730 hasConcept C11413529 @default.
- W2810530730 hasConcept C120665830 @default.
- W2810530730 hasConcept C121332964 @default.
- W2810530730 hasConcept C139945424 @default.
- W2810530730 hasConcept C154945302 @default.
- W2810530730 hasConcept C155512373 @default.
- W2810530730 hasConcept C165838908 @default.
- W2810530730 hasConcept C185592680 @default.
- W2810530730 hasConcept C198531522 @default.
- W2810530730 hasConcept C22354355 @default.
- W2810530730 hasConcept C33923547 @default.
- W2810530730 hasConcept C41008148 @default.
- W2810530730 hasConcept C43571822 @default.
- W2810530730 hasConcept C43617362 @default.
- W2810530730 hasConcept C81917197 @default.
- W2810530730 hasConceptScore W2810530730C105795698 @default.
- W2810530730 hasConceptScore W2810530730C113196181 @default.
- W2810530730 hasConceptScore W2810530730C11413529 @default.
- W2810530730 hasConceptScore W2810530730C120665830 @default.
- W2810530730 hasConceptScore W2810530730C121332964 @default.
- W2810530730 hasConceptScore W2810530730C139945424 @default.
- W2810530730 hasConceptScore W2810530730C154945302 @default.
- W2810530730 hasConceptScore W2810530730C155512373 @default.
- W2810530730 hasConceptScore W2810530730C165838908 @default.
- W2810530730 hasConceptScore W2810530730C185592680 @default.
- W2810530730 hasConceptScore W2810530730C198531522 @default.
- W2810530730 hasConceptScore W2810530730C22354355 @default.
- W2810530730 hasConceptScore W2810530730C33923547 @default.
- W2810530730 hasConceptScore W2810530730C41008148 @default.
- W2810530730 hasConceptScore W2810530730C43571822 @default.
- W2810530730 hasConceptScore W2810530730C43617362 @default.
- W2810530730 hasConceptScore W2810530730C81917197 @default.