Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810563804> ?p ?o ?g. }
- W2810563804 endingPage "202" @default.
- W2810563804 startingPage "187" @default.
- W2810563804 abstract "The reliability of condition assessment of bridges using 3D imagery data, such as 3D laser scanning point clouds, relies on inspectors’ structural engineering knowledge and skills of 3D data processing. A challenge of 3D-data-based structural condition assessment lies in the difficulties of reliably comparing 3D imagery data sets collected at different times for analyzing spatial changes of the structures and finding anomalous deformations. Spatial changes of structures could occur at multiple levels of details and be of different types: (1) rigid body motions (e.g., translations and rotations) at the structure or structural element levels; (2) deformations (e.g., bending of girders) at the levels of structural elements. Unfortunately, existing 3D imagery data-based change analysis methods only produce deviations between two 3D data sets without distinguishing deviations caused by various changes at multiple levels. Significant rigid body motions of structures and structural elements often cause large deviations that “overwhelm” deviation patterns caused by smaller element-level deformations so that engineers could hardly recognize local deformations. Unreliable deformation analysis of structural elements can lead to incorrect condition assessments. This paper presents a new multi-level 3D data registration and spatial change classification approach that automate the analysis of both element-level deformations and interactions between the motions of multiple elements based on deviations calculated between two 3D data sets. This approach uses a multi-level data registration method augmented by formalized knowledge for representing spatial changes using deviation maps between two 3D datasets. This knowledge will guide pattern analysis methods to reveal how various changes of structures collectively lead to structural systems behaviors. More specifically, this 3D data registration and spatial change classification approach eliminates deviations caused by rigid body motions before assessing deformations of structural elements. The authors conducted annual 3D imagery data collection for two single pier bridges in July 2015 and June 2016, and use those 3D data to characterize the performance of the new approach in identifying relative motions between and deformations of structural elements. The results indicate that the new approach can reliably identify relative motions between and deformations of bridge elements, such as angular changes between elements, and torsions of girders. Finally, the authors validated the change analysis results generated by the developed approach against the traditional change analysis results obtained by a knowledgeable structural engineering researcher and change analyses in multiple single-pier bridge research studies." @default.
- W2810563804 created "2018-07-10" @default.
- W2810563804 creator A5016012780 @default.
- W2810563804 creator A5049535118 @default.
- W2810563804 creator A5051191181 @default.
- W2810563804 creator A5067766979 @default.
- W2810563804 date "2018-10-01" @default.
- W2810563804 modified "2023-10-16" @default.
- W2810563804 title "A multi-level 3D data registration approach for supporting reliable spatial change classification of single-pier bridges" @default.
- W2810563804 cites W1603720607 @default.
- W2810563804 cites W1846712170 @default.
- W2810563804 cites W1964495720 @default.
- W2810563804 cites W1966173718 @default.
- W2810563804 cites W1978705997 @default.
- W2810563804 cites W1981131839 @default.
- W2810563804 cites W1983405784 @default.
- W2810563804 cites W1996772577 @default.
- W2810563804 cites W1998014319 @default.
- W2810563804 cites W1999403207 @default.
- W2810563804 cites W2006141258 @default.
- W2810563804 cites W2010483917 @default.
- W2810563804 cites W2015146957 @default.
- W2810563804 cites W2023041322 @default.
- W2810563804 cites W2032444890 @default.
- W2810563804 cites W2039959817 @default.
- W2810563804 cites W2045475002 @default.
- W2810563804 cites W2050085842 @default.
- W2810563804 cites W2050223677 @default.
- W2810563804 cites W2051647827 @default.
- W2810563804 cites W2056275715 @default.
- W2810563804 cites W2056382815 @default.
- W2810563804 cites W2059850603 @default.
- W2810563804 cites W2064510059 @default.
- W2810563804 cites W2068511230 @default.
- W2810563804 cites W2069277484 @default.
- W2810563804 cites W2077677076 @default.
- W2810563804 cites W2094460095 @default.
- W2810563804 cites W2094512035 @default.
- W2810563804 cites W2102448152 @default.
- W2810563804 cites W2104509690 @default.
- W2810563804 cites W2107235635 @default.
- W2810563804 cites W2119512999 @default.
- W2810563804 cites W2124123377 @default.
- W2810563804 cites W2125582210 @default.
- W2810563804 cites W2128880484 @default.
- W2810563804 cites W2145828616 @default.
- W2810563804 cites W2155222350 @default.
- W2810563804 cites W2164934312 @default.
- W2810563804 cites W2169534075 @default.
- W2810563804 cites W2251787932 @default.
- W2810563804 cites W2297870558 @default.
- W2810563804 cites W2321796680 @default.
- W2810563804 cites W2748932197 @default.
- W2810563804 cites W3025279125 @default.
- W2810563804 cites W4236153013 @default.
- W2810563804 doi "https://doi.org/10.1016/j.aei.2018.06.010" @default.
- W2810563804 hasPublicationYear "2018" @default.
- W2810563804 type Work @default.
- W2810563804 sameAs 2810563804 @default.
- W2810563804 citedByCount "10" @default.
- W2810563804 countsByYear W28105638042019 @default.
- W2810563804 countsByYear W28105638042020 @default.
- W2810563804 countsByYear W28105638042021 @default.
- W2810563804 countsByYear W28105638042023 @default.
- W2810563804 crossrefType "journal-article" @default.
- W2810563804 hasAuthorship W2810563804A5016012780 @default.
- W2810563804 hasAuthorship W2810563804A5049535118 @default.
- W2810563804 hasAuthorship W2810563804A5051191181 @default.
- W2810563804 hasAuthorship W2810563804A5067766979 @default.
- W2810563804 hasBestOaLocation W28105638041 @default.
- W2810563804 hasConcept C111368507 @default.
- W2810563804 hasConcept C121332964 @default.
- W2810563804 hasConcept C124101348 @default.
- W2810563804 hasConcept C127313418 @default.
- W2810563804 hasConcept C131979681 @default.
- W2810563804 hasConcept C154945302 @default.
- W2810563804 hasConcept C163258240 @default.
- W2810563804 hasConcept C204366326 @default.
- W2810563804 hasConcept C41008148 @default.
- W2810563804 hasConcept C43214815 @default.
- W2810563804 hasConcept C62520636 @default.
- W2810563804 hasConceptScore W2810563804C111368507 @default.
- W2810563804 hasConceptScore W2810563804C121332964 @default.
- W2810563804 hasConceptScore W2810563804C124101348 @default.
- W2810563804 hasConceptScore W2810563804C127313418 @default.
- W2810563804 hasConceptScore W2810563804C131979681 @default.
- W2810563804 hasConceptScore W2810563804C154945302 @default.
- W2810563804 hasConceptScore W2810563804C163258240 @default.
- W2810563804 hasConceptScore W2810563804C204366326 @default.
- W2810563804 hasConceptScore W2810563804C41008148 @default.
- W2810563804 hasConceptScore W2810563804C43214815 @default.
- W2810563804 hasConceptScore W2810563804C62520636 @default.
- W2810563804 hasFunder F4320306076 @default.
- W2810563804 hasFunder F4320322925 @default.
- W2810563804 hasLocation W28105638041 @default.
- W2810563804 hasOpenAccess W2810563804 @default.
- W2810563804 hasPrimaryLocation W28105638041 @default.
- W2810563804 hasRelatedWork W2342335999 @default.