Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810614902> ?p ?o ?g. }
- W2810614902 endingPage "667" @default.
- W2810614902 startingPage "658" @default.
- W2810614902 abstract "Urbanization, one of the predominant trends of the 21st century, places great stress on urban water supply networks. This paper aimed to identify the most important variables driving urban water supply patterns in China, a region which has seen rapid urban growth in the last few decades. In addition, a principal component analysis-informed urban water sustainability index was developed in order to benchmark cities. The research involved applying statistical learning and other analytical methods to 12 years of urban water supply data for 627 cities across China. The findings were as follows: (1) PCA showed that approximately 46.8% of variability in the data could be explained by two principal components. Component 1 (37.26%) was more closely associated with variables related to water supply and sale, supply pipelines, and water supply finance. C2 (9.51%) was clearly related to urban water prices and average per capita water use. (2) Random forest and XGBoost algorithms were effective in classifying cities according to their region, with model testing accuracies of 87.69% and 88.32% respectively. (3) Chinese cities have consistently suffered water loss/leakage rates above 20% since 2001, and water prices are closely associated with leakage. (4) China's urban water sustainability has increased by just 3.56% between 2001 and 2013; Southwest China saw the highest growth rate in urban water supply sustainability. The implications of our research effort will be useful for decision makers in water-stressed urban areas around the world who are seeking novel insights in how to leverage statistical learning techniques to gain insights into urban drinking water supply patterns." @default.
- W2810614902 created "2018-07-10" @default.
- W2810614902 creator A5011446791 @default.
- W2810614902 creator A5021506063 @default.
- W2810614902 creator A5024712316 @default.
- W2810614902 creator A5031930852 @default.
- W2810614902 creator A5036700161 @default.
- W2810614902 creator A5039491324 @default.
- W2810614902 creator A5059590788 @default.
- W2810614902 creator A5072721152 @default.
- W2810614902 creator A5072886785 @default.
- W2810614902 date "2018-10-01" @default.
- W2810614902 modified "2023-09-27" @default.
- W2810614902 title "Identification of urban drinking water supply patterns across 627 cities in China based on supervised and unsupervised statistical learning" @default.
- W2810614902 cites W1881999183 @default.
- W2810614902 cites W1984824152 @default.
- W2810614902 cites W1991088917 @default.
- W2810614902 cites W2030813458 @default.
- W2810614902 cites W2044047682 @default.
- W2810614902 cites W2055637982 @default.
- W2810614902 cites W2155304622 @default.
- W2810614902 cites W2213460819 @default.
- W2810614902 cites W2322293951 @default.
- W2810614902 cites W2496661800 @default.
- W2810614902 cites W2504718064 @default.
- W2810614902 cites W2511170587 @default.
- W2810614902 cites W2519424915 @default.
- W2810614902 cites W2529185469 @default.
- W2810614902 cites W2549894323 @default.
- W2810614902 cites W2586297576 @default.
- W2810614902 cites W2612169505 @default.
- W2810614902 cites W2730790262 @default.
- W2810614902 cites W2739710739 @default.
- W2810614902 cites W2744616002 @default.
- W2810614902 cites W2750972503 @default.
- W2810614902 cites W2752494435 @default.
- W2810614902 cites W2926365697 @default.
- W2810614902 cites W2963100393 @default.
- W2810614902 doi "https://doi.org/10.1016/j.jenvman.2018.06.073" @default.
- W2810614902 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29975893" @default.
- W2810614902 hasPublicationYear "2018" @default.
- W2810614902 type Work @default.
- W2810614902 sameAs 2810614902 @default.
- W2810614902 citedByCount "19" @default.
- W2810614902 countsByYear W28106149022018 @default.
- W2810614902 countsByYear W28106149022019 @default.
- W2810614902 countsByYear W28106149022020 @default.
- W2810614902 countsByYear W28106149022021 @default.
- W2810614902 countsByYear W28106149022022 @default.
- W2810614902 countsByYear W28106149022023 @default.
- W2810614902 crossrefType "journal-article" @default.
- W2810614902 hasAuthorship W2810614902A5011446791 @default.
- W2810614902 hasAuthorship W2810614902A5021506063 @default.
- W2810614902 hasAuthorship W2810614902A5024712316 @default.
- W2810614902 hasAuthorship W2810614902A5031930852 @default.
- W2810614902 hasAuthorship W2810614902A5036700161 @default.
- W2810614902 hasAuthorship W2810614902A5039491324 @default.
- W2810614902 hasAuthorship W2810614902A5059590788 @default.
- W2810614902 hasAuthorship W2810614902A5072721152 @default.
- W2810614902 hasAuthorship W2810614902A5072886785 @default.
- W2810614902 hasConcept C105795698 @default.
- W2810614902 hasConcept C118518473 @default.
- W2810614902 hasConcept C127598652 @default.
- W2810614902 hasConcept C144024400 @default.
- W2810614902 hasConcept C149207113 @default.
- W2810614902 hasConcept C149923435 @default.
- W2810614902 hasConcept C162324750 @default.
- W2810614902 hasConcept C166957645 @default.
- W2810614902 hasConcept C175605778 @default.
- W2810614902 hasConcept C18903297 @default.
- W2810614902 hasConcept C191935318 @default.
- W2810614902 hasConcept C205649164 @default.
- W2810614902 hasConcept C2668921 @default.
- W2810614902 hasConcept C27438332 @default.
- W2810614902 hasConcept C2908647359 @default.
- W2810614902 hasConcept C33923547 @default.
- W2810614902 hasConcept C39432304 @default.
- W2810614902 hasConcept C39853841 @default.
- W2810614902 hasConcept C48824518 @default.
- W2810614902 hasConcept C50522688 @default.
- W2810614902 hasConcept C51193700 @default.
- W2810614902 hasConcept C524765639 @default.
- W2810614902 hasConcept C66204764 @default.
- W2810614902 hasConcept C86803240 @default.
- W2810614902 hasConcept C87717796 @default.
- W2810614902 hasConcept C97053079 @default.
- W2810614902 hasConceptScore W2810614902C105795698 @default.
- W2810614902 hasConceptScore W2810614902C118518473 @default.
- W2810614902 hasConceptScore W2810614902C127598652 @default.
- W2810614902 hasConceptScore W2810614902C144024400 @default.
- W2810614902 hasConceptScore W2810614902C149207113 @default.
- W2810614902 hasConceptScore W2810614902C149923435 @default.
- W2810614902 hasConceptScore W2810614902C162324750 @default.
- W2810614902 hasConceptScore W2810614902C166957645 @default.
- W2810614902 hasConceptScore W2810614902C175605778 @default.
- W2810614902 hasConceptScore W2810614902C18903297 @default.
- W2810614902 hasConceptScore W2810614902C191935318 @default.
- W2810614902 hasConceptScore W2810614902C205649164 @default.