Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810672180> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2810672180 abstract "Principal component analysis (PCA) is a feature extraction method of mapping the original characteristic term space with high-dimensional sparsity into the low-dimensional principal component space, by utilizing the principle of variance maximization. In random matrix theory, principal components are treated as random variables, and data samples are the observations of random vectors. When there are a large amount of data samples, the observed values of principal components obey the normal distribution. We proposed a method of principal components selection based on the differential distribution of principal components in different classes. Experiment on text classification indicated that the method of principal components selection based on random matrix theory can effectively determine the principal components. This not only improves the classification performance, but also reduces the computational cost." @default.
- W2810672180 created "2018-07-10" @default.
- W2810672180 creator A5022062543 @default.
- W2810672180 creator A5046854745 @default.
- W2810672180 creator A5058178865 @default.
- W2810672180 creator A5077862135 @default.
- W2810672180 creator A5081864317 @default.
- W2810672180 date "2017-07-01" @default.
- W2810672180 modified "2023-09-27" @default.
- W2810672180 title "A method for principal components selection based on stochastic matrix" @default.
- W2810672180 cites W1563232040 @default.
- W2810672180 cites W1848453437 @default.
- W2810672180 cites W1956559956 @default.
- W2810672180 cites W1982530130 @default.
- W2810672180 cites W1989962885 @default.
- W2810672180 cites W2031248101 @default.
- W2810672180 cites W2067092078 @default.
- W2810672180 cites W2105842272 @default.
- W2810672180 cites W2113620787 @default.
- W2810672180 cites W2165612380 @default.
- W2810672180 cites W2251567929 @default.
- W2810672180 cites W2322917384 @default.
- W2810672180 cites W2516723902 @default.
- W2810672180 cites W2520488855 @default.
- W2810672180 doi "https://doi.org/10.1109/fskd.2017.8393063" @default.
- W2810672180 hasPublicationYear "2017" @default.
- W2810672180 type Work @default.
- W2810672180 sameAs 2810672180 @default.
- W2810672180 citedByCount "2" @default.
- W2810672180 countsByYear W28106721802018 @default.
- W2810672180 countsByYear W28106721802022 @default.
- W2810672180 crossrefType "proceedings-article" @default.
- W2810672180 hasAuthorship W2810672180A5022062543 @default.
- W2810672180 hasAuthorship W2810672180A5046854745 @default.
- W2810672180 hasAuthorship W2810672180A5058178865 @default.
- W2810672180 hasAuthorship W2810672180A5077862135 @default.
- W2810672180 hasAuthorship W2810672180A5081864317 @default.
- W2810672180 hasConcept C105795698 @default.
- W2810672180 hasConcept C106487976 @default.
- W2810672180 hasConcept C11413529 @default.
- W2810672180 hasConcept C122123141 @default.
- W2810672180 hasConcept C126255220 @default.
- W2810672180 hasConcept C153180895 @default.
- W2810672180 hasConcept C154945302 @default.
- W2810672180 hasConcept C159985019 @default.
- W2810672180 hasConcept C185142706 @default.
- W2810672180 hasConcept C192562407 @default.
- W2810672180 hasConcept C24252448 @default.
- W2810672180 hasConcept C27438332 @default.
- W2810672180 hasConcept C2776330181 @default.
- W2810672180 hasConcept C33923547 @default.
- W2810672180 hasConcept C41008148 @default.
- W2810672180 hasConcept C81917197 @default.
- W2810672180 hasConceptScore W2810672180C105795698 @default.
- W2810672180 hasConceptScore W2810672180C106487976 @default.
- W2810672180 hasConceptScore W2810672180C11413529 @default.
- W2810672180 hasConceptScore W2810672180C122123141 @default.
- W2810672180 hasConceptScore W2810672180C126255220 @default.
- W2810672180 hasConceptScore W2810672180C153180895 @default.
- W2810672180 hasConceptScore W2810672180C154945302 @default.
- W2810672180 hasConceptScore W2810672180C159985019 @default.
- W2810672180 hasConceptScore W2810672180C185142706 @default.
- W2810672180 hasConceptScore W2810672180C192562407 @default.
- W2810672180 hasConceptScore W2810672180C24252448 @default.
- W2810672180 hasConceptScore W2810672180C27438332 @default.
- W2810672180 hasConceptScore W2810672180C2776330181 @default.
- W2810672180 hasConceptScore W2810672180C33923547 @default.
- W2810672180 hasConceptScore W2810672180C41008148 @default.
- W2810672180 hasConceptScore W2810672180C81917197 @default.
- W2810672180 hasLocation W28106721801 @default.
- W2810672180 hasOpenAccess W2810672180 @default.
- W2810672180 hasPrimaryLocation W28106721801 @default.
- W2810672180 hasRelatedWork W1522841492 @default.
- W2810672180 hasRelatedWork W1563993211 @default.
- W2810672180 hasRelatedWork W1591091565 @default.
- W2810672180 hasRelatedWork W1594082855 @default.
- W2810672180 hasRelatedWork W1977408938 @default.
- W2810672180 hasRelatedWork W2089904261 @default.
- W2810672180 hasRelatedWork W210937728 @default.
- W2810672180 hasRelatedWork W2172183780 @default.
- W2810672180 hasRelatedWork W2282582590 @default.
- W2810672180 hasRelatedWork W2321013942 @default.
- W2810672180 hasRelatedWork W2376016872 @default.
- W2810672180 hasRelatedWork W2409439864 @default.
- W2810672180 hasRelatedWork W2410572895 @default.
- W2810672180 hasRelatedWork W2541920683 @default.
- W2810672180 hasRelatedWork W2604124063 @default.
- W2810672180 hasRelatedWork W2975021181 @default.
- W2810672180 hasRelatedWork W3008517435 @default.
- W2810672180 hasRelatedWork W3111508902 @default.
- W2810672180 hasRelatedWork W2819705575 @default.
- W2810672180 hasRelatedWork W3109086716 @default.
- W2810672180 isParatext "false" @default.
- W2810672180 isRetracted "false" @default.
- W2810672180 magId "2810672180" @default.
- W2810672180 workType "article" @default.