Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810733508> ?p ?o ?g. }
- W2810733508 endingPage "222" @default.
- W2810733508 startingPage "205" @default.
- W2810733508 abstract "Magnesium isotopic systematics has been increasingly used to trace the biogeochemical cycle of Mg in soil systems, and Fe oxides are the critical soil components that affect the geochemical behaviours of elements in soils. The role of Fe oxides in fractionating Mg isotopes, however, remains unclear. Here, Mg isotopic compositions are reported for typical Fe-Mn nodules (FMNs), surrounding soils, soil waters, and soil surface waters for a paddy soil profile, and stream waters, and rainwaters in southwestern China to improve our understanding of the processes that control the Mg isotopic compositions in soil systems. Further sequential extraction experiments are conducted to separate two pools of Mg in the FMNs and soils: structural Mg and exchange Mg. The FMNs (−1.39 to −1.58‰) are isotopically lighter than surrounding soils (−0.59 to −0.85‰) but heavier than soil waters (−1.59‰), and surrounding soils are isotopically lighter than parent granite (−0.25‰). The difference in Mg isotopic compositions between FMNs and surrounding soils reflects different sources of Mg in the mineral crystal structures. Structural Mg in surrounding soils is mainly from the chemical weathering of parent granite. By contrast, structural Mg in FMNs is from soil waters because of the frequently repeated dissolution and precipitation of Fe oxides under alternating redox conditions. Enrichment of heavy Mg isotopes in the FMNs relative to soil waters results from preferential incorporation of 26Mg via Mg2+ substitution for Fe3+ in goethite. Given that the exchangeable Mg (−1.62 to −1.91‰) is significantly enriched in light Mg isotopes, the lighter Mg isotopic compositions in surrounding soils relative to their parent granite can be explained by the retention of light Mg isotopes in exchangeable sites of Mg-depleted minerals (kaolinite). Exchangeable Mg in FMNs (−1.79 to −2.15‰) is also shown to be enriched in light Mg isotopes. These light isotopic compositions of exchangeable Mg can be explained by a combination of carbonate contribution and isotope fractionation processes on the soil exchange fractions. Ion-exchange processes preferentially remove heavy Mg isotopes from soil minerals, leaving soil exchange fractions hosting light Mg isotopes. Additionally, river waters draining carbonates contributes light Mg isotopes to soil exchangeable fractions. Our study demonstrates that the development of Mg-depleted clay minerals and Fe oxides can considerably lower the soil δ26Mg values, highlighting the major roles of these two soil minerals in controlling soil Mg isotopic compositions." @default.
- W2810733508 created "2018-07-10" @default.
- W2810733508 creator A5009630602 @default.
- W2810733508 creator A5019901639 @default.
- W2810733508 creator A5027778170 @default.
- W2810733508 creator A5042908199 @default.
- W2810733508 creator A5060451301 @default.
- W2810733508 creator A5073697986 @default.
- W2810733508 creator A5075809078 @default.
- W2810733508 creator A5087061864 @default.
- W2810733508 date "2018-09-01" @default.
- W2810733508 modified "2023-10-16" @default.
- W2810733508 title "Contrasting Mg isotopic compositions between Fe-Mn nodules and surrounding soils: Accumulation of light Mg isotopes by Mg-depleted clay minerals and Fe oxides" @default.
- W2810733508 cites W149372156 @default.
- W2810733508 cites W1526090647 @default.
- W2810733508 cites W1845445271 @default.
- W2810733508 cites W1967966016 @default.
- W2810733508 cites W1968555610 @default.
- W2810733508 cites W1973084625 @default.
- W2810733508 cites W1973182365 @default.
- W2810733508 cites W1981007629 @default.
- W2810733508 cites W1984519632 @default.
- W2810733508 cites W1986265239 @default.
- W2810733508 cites W1986562082 @default.
- W2810733508 cites W1992222257 @default.
- W2810733508 cites W1996596752 @default.
- W2810733508 cites W2000953743 @default.
- W2810733508 cites W2005682964 @default.
- W2810733508 cites W2006567546 @default.
- W2810733508 cites W2006923080 @default.
- W2810733508 cites W2011955045 @default.
- W2810733508 cites W2014416110 @default.
- W2810733508 cites W2014738574 @default.
- W2810733508 cites W2015191519 @default.
- W2810733508 cites W2016675475 @default.
- W2810733508 cites W2018648623 @default.
- W2810733508 cites W2019265223 @default.
- W2810733508 cites W2020028063 @default.
- W2810733508 cites W202225040 @default.
- W2810733508 cites W2023652180 @default.
- W2810733508 cites W2023959580 @default.
- W2810733508 cites W2024693414 @default.
- W2810733508 cites W2035611535 @default.
- W2810733508 cites W2035770736 @default.
- W2810733508 cites W2042512309 @default.
- W2810733508 cites W2048444857 @default.
- W2810733508 cites W2049905590 @default.
- W2810733508 cites W2051955310 @default.
- W2810733508 cites W2052393515 @default.
- W2810733508 cites W2052813391 @default.
- W2810733508 cites W2060217799 @default.
- W2810733508 cites W2062676709 @default.
- W2810733508 cites W2062712059 @default.
- W2810733508 cites W2063263639 @default.
- W2810733508 cites W2069511863 @default.
- W2810733508 cites W2069694403 @default.
- W2810733508 cites W2071069131 @default.
- W2810733508 cites W2072896153 @default.
- W2810733508 cites W2076813283 @default.
- W2810733508 cites W2078431687 @default.
- W2810733508 cites W2083621617 @default.
- W2810733508 cites W2085117485 @default.
- W2810733508 cites W2085434575 @default.
- W2810733508 cites W2090543559 @default.
- W2810733508 cites W2099101784 @default.
- W2810733508 cites W2102303034 @default.
- W2810733508 cites W2114134135 @default.
- W2810733508 cites W2124602277 @default.
- W2810733508 cites W2125927824 @default.
- W2810733508 cites W2128419417 @default.
- W2810733508 cites W2139042195 @default.
- W2810733508 cites W2141014038 @default.
- W2810733508 cites W2143353107 @default.
- W2810733508 cites W2143406107 @default.
- W2810733508 cites W2150862234 @default.
- W2810733508 cites W2150990894 @default.
- W2810733508 cites W2151602361 @default.
- W2810733508 cites W2152967648 @default.
- W2810733508 cites W2155967341 @default.
- W2810733508 cites W2161722526 @default.
- W2810733508 cites W2163393460 @default.
- W2810733508 cites W2219804046 @default.
- W2810733508 cites W2227269460 @default.
- W2810733508 cites W2258276457 @default.
- W2810733508 cites W2341647468 @default.
- W2810733508 cites W2376402588 @default.
- W2810733508 cites W2481082856 @default.
- W2810733508 cites W2564246888 @default.
- W2810733508 cites W2585596022 @default.
- W2810733508 cites W2594110803 @default.
- W2810733508 cites W2614815791 @default.
- W2810733508 cites W2763187081 @default.
- W2810733508 doi "https://doi.org/10.1016/j.gca.2018.06.028" @default.
- W2810733508 hasPublicationYear "2018" @default.
- W2810733508 type Work @default.
- W2810733508 sameAs 2810733508 @default.
- W2810733508 citedByCount "41" @default.
- W2810733508 countsByYear W28107335082018 @default.