Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810858501> ?p ?o ?g. }
- W2810858501 abstract "Western Europe is typically prone to extreme weather events during the winter months, which typically take the form of windstorms or flooding. The storm Desmond brought strong winds and heavy rain to Ireland, northern England and Scotland in December 2015, resulting in an estimated $500 million worth of damage and extensive flooding, particularly in the region of Cumbria. Accurate modelling of such extreme weather events is necessary to ensure that the societal and infrastructural risk associated with these phenomena is minimised. In statistical modelling, extreme value analysis is typically used to model the rate and size of extreme weather events. Typically, practitioners can use the outputs of such an analysis to design flood defences to a standard such that there is only a small probability that defences are breached in a given year. These models can be applied at individual sites or adapted to address questions related to the spatial extent of an event, which is important for policy makers eager to reduce the economic and societal impacts associated with extreme weather. One aim of this thesis is to improve inference with regarding to existing extreme value methodology. First, we propose a reparameterisation of the likelihood corresponding to the Poisson process model for excesses above a high threshold, which improves mixing in a Bayesian framework and ensures more rapid convergence of the parameter chains in a Markov Chain Monte Carlo routine. The Poisson process model is often preferred for modelling extremes of non-stationary processes as the parameters are invariant to the choice of threshold; our approach may increase the possibility of this model being used more widely. Second, we propose an adjustment to the likelihood when implementing a spatial hierarchical model for extremes, which accounts for the dependence in the data when estimating model uncertainty. In both cases, the improvement in inference should increase confidence among practitioners of the outputs obtained from extreme value models. The main influence of extreme weather events in winter is from the passage of low-pressure extratropical cyclones from the North Atlantic. The second aim of this thesis is to quantify the risk associated with extreme wind speed events, which we call windstorms, arising from an extratropical cyclone system. First, we develop a model capturing the spatial variation of the track associated with the cyclone, from which we can simulate synthetic tracks with the same statistical characteristics of the observed record. Second, we describe an approach for modelling the spatial extent and severity of windstorms relative to the storm track, from which we can provide improved estimates of risk associated with windstorms at individual sites and jointly over a spatial domain. The methods described in this thesis can be used to address multiple questions related to windstorm risk, that is not available using current methodology." @default.
- W2810858501 created "2018-07-10" @default.
- W2810858501 creator A5024098122 @default.
- W2810858501 date "2018-01-01" @default.
- W2810858501 modified "2023-09-24" @default.
- W2810858501 title "Statistical models for extreme weather events" @default.
- W2810858501 cites W1481460540 @default.
- W2810858501 cites W1500657154 @default.
- W2810858501 cites W1520053542 @default.
- W2810858501 cites W1528068698 @default.
- W2810858501 cites W1529285559 @default.
- W2810858501 cites W1556631438 @default.
- W2810858501 cites W1578338182 @default.
- W2810858501 cites W1598299151 @default.
- W2810858501 cites W1673310716 @default.
- W2810858501 cites W1835927966 @default.
- W2810858501 cites W1886188609 @default.
- W2810858501 cites W1899703473 @default.
- W2810858501 cites W1959492 @default.
- W2810858501 cites W1968221960 @default.
- W2810858501 cites W1968729240 @default.
- W2810858501 cites W1969172677 @default.
- W2810858501 cites W1970994977 @default.
- W2810858501 cites W1972685339 @default.
- W2810858501 cites W1976171518 @default.
- W2810858501 cites W1978644964 @default.
- W2810858501 cites W1982213580 @default.
- W2810858501 cites W2000412447 @default.
- W2810858501 cites W2000523769 @default.
- W2810858501 cites W2010313759 @default.
- W2810858501 cites W2016316670 @default.
- W2810858501 cites W2019138583 @default.
- W2810858501 cites W2021418005 @default.
- W2810858501 cites W2029156323 @default.
- W2810858501 cites W2029715050 @default.
- W2810858501 cites W2030597423 @default.
- W2810858501 cites W2031214688 @default.
- W2810858501 cites W2036501130 @default.
- W2810858501 cites W2036983007 @default.
- W2810858501 cites W2039011134 @default.
- W2810858501 cites W2047030491 @default.
- W2810858501 cites W2050209503 @default.
- W2810858501 cites W2052218905 @default.
- W2810858501 cites W2056199992 @default.
- W2810858501 cites W2057765075 @default.
- W2810858501 cites W2058749872 @default.
- W2810858501 cites W2058959119 @default.
- W2810858501 cites W2060597638 @default.
- W2810858501 cites W2061802350 @default.
- W2810858501 cites W2067342226 @default.
- W2810858501 cites W2068106118 @default.
- W2810858501 cites W2071769383 @default.
- W2810858501 cites W2073416275 @default.
- W2810858501 cites W2074080940 @default.
- W2810858501 cites W2076902108 @default.
- W2810858501 cites W2081491959 @default.
- W2810858501 cites W2087406343 @default.
- W2810858501 cites W2090249381 @default.
- W2810858501 cites W2094333688 @default.
- W2810858501 cites W2096473192 @default.
- W2810858501 cites W2102538775 @default.
- W2810858501 cites W2103656156 @default.
- W2810858501 cites W2105741553 @default.
- W2810858501 cites W2107439800 @default.
- W2810858501 cites W2113791303 @default.
- W2810858501 cites W2116190320 @default.
- W2810858501 cites W2119833226 @default.
- W2810858501 cites W2121093579 @default.
- W2810858501 cites W2122456939 @default.
- W2810858501 cites W2123128257 @default.
- W2810858501 cites W2130761473 @default.
- W2810858501 cites W2131477567 @default.
- W2810858501 cites W2133456110 @default.
- W2810858501 cites W2133629339 @default.
- W2810858501 cites W2140327107 @default.
- W2810858501 cites W2143022286 @default.
- W2810858501 cites W2148534890 @default.
- W2810858501 cites W2151484421 @default.
- W2810858501 cites W2159733436 @default.
- W2810858501 cites W2163288162 @default.
- W2810858501 cites W2165878827 @default.
- W2810858501 cites W2174925780 @default.
- W2810858501 cites W2176412098 @default.
- W2810858501 cites W2180520229 @default.
- W2810858501 cites W2264368746 @default.
- W2810858501 cites W2326297968 @default.
- W2810858501 cites W2328573691 @default.
- W2810858501 cites W2343508214 @default.
- W2810858501 cites W2345670872 @default.
- W2810858501 cites W2507039649 @default.
- W2810858501 cites W2510911430 @default.
- W2810858501 cites W2555813892 @default.
- W2810858501 cites W2569418859 @default.
- W2810858501 cites W2581041162 @default.
- W2810858501 cites W2769695013 @default.
- W2810858501 cites W2890870942 @default.
- W2810858501 cites W2963206956 @default.
- W2810858501 cites W2963759470 @default.
- W2810858501 cites W2963933782 @default.
- W2810858501 cites W3097998861 @default.