Matches in SemOpenAlex for { <https://semopenalex.org/work/W28109220> ?p ?o ?g. }
- W28109220 abstract "Visual sensor networks (VSNs) that employ content-rich 2-D images or image sequences as the basic media have been evolving rapidly in recent years. Besides the critical resource constraints that are already inherent in any micro-sensor networks, the development of VSNs also faces challenges from device design, image transmission, and onboard image processing, among which efficient onboard processing is the most difficult to tackle. The focus of this dissertation is to develop efficient image processing solutions from three aspects: to improve the time-consuming image processing algorithms using pipelined and parallel computing; to distribute the computation more effectively through novel function and image partitioning, clustering, and mapping approaches; and to implement these techniques on the virtual microsensor platform for fast onboard image processing. First, to show the efficiency of pipelined and parallel computing in algorithm improvement, we take independent component analysis (ICA) as an example and design a parallel ICA (pICA) method using the SPMD (Single Process Multiple Data) structure. Experimental results show that pICA accelerates the processing time by 2.4 to 5.7 times compared to the FastICA algorithm, which is the fastest existing software implementation of ICA. Secondly, in order to efficiently allocate image processing algorithms to microsensors in VSNs, we present a multi-weight operation level function model, a data dependency analysis, two resource-oriented function mapping algorithms, the load attraction and the communication attraction , with the Kernighan-Lin algorithm-based local refinements such that the execution of image processing algorithms can be closely coupled with available resources in a heterogeneous environment. A component clustering algorithm and a cyclic process model associated with the operation level function model are also proposed in order to provide appropriate granularity to the mapping process. Experimental results show that function models processed by the component clustering algorithm have the best mapping performance compared to other function models. The cyclic process modeling is very effective for complex image processing algorithms. The proposed load attraction and communication attraction mapping algorithms respectively improve load variances and cut weights compared to existing mapping algorithms by 5 to 15 times, and both exhibit the closest performance to that of the optimal mapping. Finally, we present a virtual microsensor platform and implement the proposed techniques for application-specific microsensor design. While most existing microsensors are developed for general purposes, the microsensor design we propose is driven by specific applications and moves the reuse and reconfiguration features in hardware implementation to higher abstraction level. We develop an image processing intellectual property (IP) library and design four image processing IPs. Experimental results show that the performance our designs achieved is better than those of existing implementations, and the proposed virtual microsensor platform can efficiently integrate different image processing algorithms according to specific application requirements." @default.
- W28109220 created "2016-06-24" @default.
- W28109220 creator A5013271776 @default.
- W28109220 creator A5072730926 @default.
- W28109220 date "2006-01-01" @default.
- W28109220 modified "2023-09-24" @default.
- W28109220 title "Efficient image processing in resource-constrained visual sensor networks" @default.
- W28109220 cites W1483279835 @default.
- W28109220 cites W1483843376 @default.
- W28109220 cites W1495918396 @default.
- W28109220 cites W1502800849 @default.
- W28109220 cites W1517269133 @default.
- W28109220 cites W1523850626 @default.
- W28109220 cites W1542689843 @default.
- W28109220 cites W1554340369 @default.
- W28109220 cites W1555915743 @default.
- W28109220 cites W1594805977 @default.
- W28109220 cites W1600484716 @default.
- W28109220 cites W1629363072 @default.
- W28109220 cites W1784710995 @default.
- W28109220 cites W1805374096 @default.
- W28109220 cites W1826231113 @default.
- W28109220 cites W1967638373 @default.
- W28109220 cites W1977496278 @default.
- W28109220 cites W1983981849 @default.
- W28109220 cites W1984216370 @default.
- W28109220 cites W1990150305 @default.
- W28109220 cites W1998336350 @default.
- W28109220 cites W2006575519 @default.
- W28109220 cites W2011900848 @default.
- W28109220 cites W2022695405 @default.
- W28109220 cites W2025397485 @default.
- W28109220 cites W2030790588 @default.
- W28109220 cites W2032882110 @default.
- W28109220 cites W2038713122 @default.
- W28109220 cites W2047534701 @default.
- W28109220 cites W2089337412 @default.
- W28109220 cites W2095117703 @default.
- W28109220 cites W2097025565 @default.
- W28109220 cites W2097325568 @default.
- W28109220 cites W2099741732 @default.
- W28109220 cites W2101041823 @default.
- W28109220 cites W2102005967 @default.
- W28109220 cites W2102061396 @default.
- W28109220 cites W2102544089 @default.
- W28109220 cites W2105389284 @default.
- W28109220 cites W2108384452 @default.
- W28109220 cites W2108946077 @default.
- W28109220 cites W2109220922 @default.
- W28109220 cites W2109868689 @default.
- W28109220 cites W2113734481 @default.
- W28109220 cites W2113870209 @default.
- W28109220 cites W2116507456 @default.
- W28109220 cites W2117723472 @default.
- W28109220 cites W2120624236 @default.
- W28109220 cites W2120970098 @default.
- W28109220 cites W2122593349 @default.
- W28109220 cites W2123770985 @default.
- W28109220 cites W2125690626 @default.
- W28109220 cites W2127005563 @default.
- W28109220 cites W2127742225 @default.
- W28109220 cites W2128118652 @default.
- W28109220 cites W2132450497 @default.
- W28109220 cites W2135401919 @default.
- W28109220 cites W2136132081 @default.
- W28109220 cites W2139896607 @default.
- W28109220 cites W2145659598 @default.
- W28109220 cites W2147010864 @default.
- W28109220 cites W2148070710 @default.
- W28109220 cites W2150060382 @default.
- W28109220 cites W2151328753 @default.
- W28109220 cites W2152931522 @default.
- W28109220 cites W2155270442 @default.
- W28109220 cites W2158919248 @default.
- W28109220 cites W2160135494 @default.
- W28109220 cites W2161455936 @default.
- W28109220 cites W2162705435 @default.
- W28109220 cites W2169058874 @default.
- W28109220 cites W2169060214 @default.
- W28109220 cites W2169530619 @default.
- W28109220 cites W2169626348 @default.
- W28109220 cites W2172185362 @default.
- W28109220 cites W2278717387 @default.
- W28109220 cites W2291391172 @default.
- W28109220 cites W2487055501 @default.
- W28109220 cites W2788278769 @default.
- W28109220 hasPublicationYear "2006" @default.
- W28109220 type Work @default.
- W28109220 sameAs 28109220 @default.
- W28109220 citedByCount "0" @default.
- W28109220 crossrefType "journal-article" @default.
- W28109220 hasAuthorship W28109220A5013271776 @default.
- W28109220 hasAuthorship W28109220A5072730926 @default.
- W28109220 hasConcept C104317675 @default.
- W28109220 hasConcept C106515295 @default.
- W28109220 hasConcept C108037233 @default.
- W28109220 hasConcept C111919701 @default.
- W28109220 hasConcept C115961682 @default.
- W28109220 hasConcept C120314980 @default.
- W28109220 hasConcept C120665830 @default.