Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810931617> ?p ?o ?g. }
- W2810931617 endingPage "262" @default.
- W2810931617 startingPage "239" @default.
- W2810931617 abstract "Anticipating future situations from streaming sensor data is a key perception challenge for mobile robotics and automated vehicles. We address the problem of predicting the path of objects with multiple dynamic modes. The dynamics of such targets can be described by a Switching Linear Dynamical System (SLDS). However, predictions from this probabilistic model cannot anticipate when a change in dynamic mode will occur. We propose to extract various types of cues with computer vision to provide context on the target’s behavior, and incorporate these in a Dynamic Bayesian Network (DBN). The DBN extends the SLDS by conditioning the mode transition probabilities on additional context states. We describe efficient online inference in this DBN for probabilistic path prediction, accounting for uncertainty in both measurements and target behavior. Our approach is illustrated on two scenarios in the Intelligent Vehicles domain concerning pedestrians and cyclists, so-called Vulnerable Road Users (VRUs). Here, context cues include the static environment of the VRU, its dynamic environment, and its observed actions. Experiments using stereo vision data from a moving vehicle demonstrate that the proposed approach results in more accurate path prediction than SLDS at the relevant short time horizon (1 s). It slightly outperforms a computationally more demanding state-of-the-art method." @default.
- W2810931617 created "2018-07-10" @default.
- W2810931617 creator A5007686963 @default.
- W2810931617 creator A5022282223 @default.
- W2810931617 creator A5074902093 @default.
- W2810931617 creator A5085298812 @default.
- W2810931617 date "2018-07-02" @default.
- W2810931617 modified "2023-10-18" @default.
- W2810931617 title "Context-Based Path Prediction for Targets with Switching Dynamics" @default.
- W2810931617 cites W1198723673 @default.
- W2810931617 cites W1531532259 @default.
- W2810931617 cites W155097506 @default.
- W2810931617 cites W1579387951 @default.
- W2810931617 cites W1915261739 @default.
- W2810931617 cites W1921093919 @default.
- W2810931617 cites W1936415111 @default.
- W2810931617 cites W1980985548 @default.
- W2810931617 cites W1983219589 @default.
- W2810931617 cites W1996097451 @default.
- W2810931617 cites W2004641798 @default.
- W2810931617 cites W2010256323 @default.
- W2810931617 cites W2031454541 @default.
- W2810931617 cites W2045893916 @default.
- W2810931617 cites W2046584898 @default.
- W2810931617 cites W2048960138 @default.
- W2810931617 cites W2053842193 @default.
- W2810931617 cites W2056764273 @default.
- W2810931617 cites W2060061906 @default.
- W2810931617 cites W2071076724 @default.
- W2810931617 cites W2092272787 @default.
- W2810931617 cites W2093628576 @default.
- W2810931617 cites W2095905764 @default.
- W2810931617 cites W2098317899 @default.
- W2810931617 cites W2101415982 @default.
- W2810931617 cites W2103873528 @default.
- W2810931617 cites W2105889057 @default.
- W2810931617 cites W2106549235 @default.
- W2810931617 cites W2106993639 @default.
- W2810931617 cites W2108341012 @default.
- W2810931617 cites W2113598110 @default.
- W2810931617 cites W2117248802 @default.
- W2810931617 cites W2137097255 @default.
- W2810931617 cites W2139479830 @default.
- W2810931617 cites W2139783272 @default.
- W2810931617 cites W2146229414 @default.
- W2810931617 cites W2149689118 @default.
- W2810931617 cites W2150066425 @default.
- W2810931617 cites W2167052694 @default.
- W2810931617 cites W2245440101 @default.
- W2810931617 cites W2248125431 @default.
- W2810931617 cites W2309847090 @default.
- W2810931617 cites W2340897893 @default.
- W2810931617 cites W2343568200 @default.
- W2810931617 cites W2415953079 @default.
- W2810931617 cites W2424778531 @default.
- W2810931617 cites W2463627759 @default.
- W2810931617 cites W2465597433 @default.
- W2810931617 cites W2475723319 @default.
- W2810931617 cites W2508946775 @default.
- W2810931617 cites W2513177073 @default.
- W2810931617 cites W2513866924 @default.
- W2810931617 cites W2514798425 @default.
- W2810931617 cites W2518708963 @default.
- W2810931617 cites W2519586580 @default.
- W2810931617 cites W2532516272 @default.
- W2810931617 cites W2559085405 @default.
- W2810931617 cites W2562663242 @default.
- W2810931617 cites W2592496287 @default.
- W2810931617 cites W2594287830 @default.
- W2810931617 cites W2607296803 @default.
- W2810931617 cites W2612505401 @default.
- W2810931617 cites W2612885812 @default.
- W2810931617 cites W2688316891 @default.
- W2810931617 cites W2737258237 @default.
- W2810931617 cites W2739667207 @default.
- W2810931617 cites W2739779333 @default.
- W2810931617 cites W2739831828 @default.
- W2810931617 cites W2740801047 @default.
- W2810931617 cites W2911273949 @default.
- W2810931617 cites W2963037989 @default.
- W2810931617 cites W3102327032 @default.
- W2810931617 cites W3106250896 @default.
- W2810931617 doi "https://doi.org/10.1007/s11263-018-1104-4" @default.
- W2810931617 hasPublicationYear "2018" @default.
- W2810931617 type Work @default.
- W2810931617 sameAs 2810931617 @default.
- W2810931617 citedByCount "103" @default.
- W2810931617 countsByYear W28109316172019 @default.
- W2810931617 countsByYear W28109316172020 @default.
- W2810931617 countsByYear W28109316172021 @default.
- W2810931617 countsByYear W28109316172022 @default.
- W2810931617 countsByYear W28109316172023 @default.
- W2810931617 crossrefType "journal-article" @default.
- W2810931617 hasAuthorship W2810931617A5007686963 @default.
- W2810931617 hasAuthorship W2810931617A5022282223 @default.
- W2810931617 hasAuthorship W2810931617A5074902093 @default.
- W2810931617 hasAuthorship W2810931617A5085298812 @default.
- W2810931617 hasBestOaLocation W28109316171 @default.