Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810943906> ?p ?o ?g. }
- W2810943906 endingPage "76" @default.
- W2810943906 startingPage "66" @default.
- W2810943906 abstract "This paper presents a hybrid approach to predict the electric energy usage of weather‐sensitive loads. The presented method utilizes the clustering paradigm along with ANN and SVM approaches for accurate short‐term prediction of electric energy usage, using weather data. Since the methodology being invoked in this research is based on CRISP data mining, data preparation has received a great deal of attention in this research. Once data pre‐processing was done, the underlying pattern of electric energy consumption was extracted by the means of machine learning methods to precisely forecast short‐term energy consumption. The proposed approach (CBA‐ANN‐SVM) was applied to real load data and resulting higher accuracy comparing to the existing models. © 2018 American Institute of Chemical Engineers Environ Prog, 38: 66–76, 2019" @default.
- W2810943906 created "2018-07-10" @default.
- W2810943906 creator A5022739916 @default.
- W2810943906 creator A5029569338 @default.
- W2810943906 creator A5057091183 @default.
- W2810943906 creator A5072746309 @default.
- W2810943906 creator A5086550972 @default.
- W2810943906 date "2018-06-27" @default.
- W2810943906 modified "2023-10-05" @default.
- W2810943906 title "A Hybrid clustering and classification technique for forecasting short‐term energy consumption" @default.
- W2810943906 cites W100848160 @default.
- W2810943906 cites W1991151501 @default.
- W2810943906 cites W1995027390 @default.
- W2810943906 cites W2005683380 @default.
- W2810943906 cites W2010448349 @default.
- W2810943906 cites W2013570992 @default.
- W2810943906 cites W2042792535 @default.
- W2810943906 cites W2048764852 @default.
- W2810943906 cites W2062901109 @default.
- W2810943906 cites W2068928057 @default.
- W2810943906 cites W2071258353 @default.
- W2810943906 cites W2071897781 @default.
- W2810943906 cites W2076769467 @default.
- W2810943906 cites W2079843671 @default.
- W2810943906 cites W2094583358 @default.
- W2810943906 cites W2100108878 @default.
- W2810943906 cites W2103226621 @default.
- W2810943906 cites W2106712543 @default.
- W2810943906 cites W2112878746 @default.
- W2810943906 cites W2117453302 @default.
- W2810943906 cites W2119143117 @default.
- W2810943906 cites W2124213846 @default.
- W2810943906 cites W2139073438 @default.
- W2810943906 cites W2142827986 @default.
- W2810943906 cites W2151767444 @default.
- W2810943906 cites W2153541934 @default.
- W2810943906 cites W2158678687 @default.
- W2810943906 cites W2169176023 @default.
- W2810943906 cites W2297523174 @default.
- W2810943906 cites W2343199487 @default.
- W2810943906 cites W2345044153 @default.
- W2810943906 cites W2497152198 @default.
- W2810943906 cites W2605029335 @default.
- W2810943906 cites W2741517055 @default.
- W2810943906 cites W81765787 @default.
- W2810943906 doi "https://doi.org/10.1002/ep.12934" @default.
- W2810943906 hasPublicationYear "2018" @default.
- W2810943906 type Work @default.
- W2810943906 sameAs 2810943906 @default.
- W2810943906 citedByCount "88" @default.
- W2810943906 countsByYear W28109439062018 @default.
- W2810943906 countsByYear W28109439062019 @default.
- W2810943906 countsByYear W28109439062020 @default.
- W2810943906 countsByYear W28109439062021 @default.
- W2810943906 countsByYear W28109439062022 @default.
- W2810943906 countsByYear W28109439062023 @default.
- W2810943906 crossrefType "journal-article" @default.
- W2810943906 hasAuthorship W2810943906A5022739916 @default.
- W2810943906 hasAuthorship W2810943906A5029569338 @default.
- W2810943906 hasAuthorship W2810943906A5057091183 @default.
- W2810943906 hasAuthorship W2810943906A5072746309 @default.
- W2810943906 hasAuthorship W2810943906A5086550972 @default.
- W2810943906 hasBestOaLocation W28109439061 @default.
- W2810943906 hasConcept C105795698 @default.
- W2810943906 hasConcept C119599485 @default.
- W2810943906 hasConcept C119857082 @default.
- W2810943906 hasConcept C121332964 @default.
- W2810943906 hasConcept C12267149 @default.
- W2810943906 hasConcept C124101348 @default.
- W2810943906 hasConcept C127413603 @default.
- W2810943906 hasConcept C154945302 @default.
- W2810943906 hasConcept C163258240 @default.
- W2810943906 hasConcept C186370098 @default.
- W2810943906 hasConcept C2779027077 @default.
- W2810943906 hasConcept C2780165032 @default.
- W2810943906 hasConcept C29592376 @default.
- W2810943906 hasConcept C33923547 @default.
- W2810943906 hasConcept C41008148 @default.
- W2810943906 hasConcept C61797465 @default.
- W2810943906 hasConcept C62520636 @default.
- W2810943906 hasConcept C73555534 @default.
- W2810943906 hasConceptScore W2810943906C105795698 @default.
- W2810943906 hasConceptScore W2810943906C119599485 @default.
- W2810943906 hasConceptScore W2810943906C119857082 @default.
- W2810943906 hasConceptScore W2810943906C121332964 @default.
- W2810943906 hasConceptScore W2810943906C12267149 @default.
- W2810943906 hasConceptScore W2810943906C124101348 @default.
- W2810943906 hasConceptScore W2810943906C127413603 @default.
- W2810943906 hasConceptScore W2810943906C154945302 @default.
- W2810943906 hasConceptScore W2810943906C163258240 @default.
- W2810943906 hasConceptScore W2810943906C186370098 @default.
- W2810943906 hasConceptScore W2810943906C2779027077 @default.
- W2810943906 hasConceptScore W2810943906C2780165032 @default.
- W2810943906 hasConceptScore W2810943906C29592376 @default.
- W2810943906 hasConceptScore W2810943906C33923547 @default.
- W2810943906 hasConceptScore W2810943906C41008148 @default.
- W2810943906 hasConceptScore W2810943906C61797465 @default.
- W2810943906 hasConceptScore W2810943906C62520636 @default.